Pamela J Lein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1276364/publications.pdf

Version: 2024-02-01

244 papers 9,842 citations

54 h-index 82 g-index

252 all docs

252 docs citations

times ranked

252

9100 citing authors

#	Article	IF	CITATIONS
1	Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons. Neuron, 1995, 15, 597-605.	8.1	242
2	A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature, 2021, 589, 474-479.	27.8	221
3	Minding the calcium store: Ryanodine receptor activation as a convergent mechanism of PCB toxicity. , 2010, 125, 260-285.		205
4	A review of experimental evidence linking neurotoxic organophosphorus compounds and inflammation. NeuroToxicology, 2012, 33, 575-584.	3.0	184
5	Mutant IDH1 and seizures in patients with glioma. Neurology, 2017, 88, 1805-1813.	1.1	167
6	Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Progress in Lipid Research, 2022, 86, 101165.	11.6	164
7	Using the Morris Water Maze to Assess Spatial Learning and Memory in Weanling Mice. PLoS ONE, 2015, 10, e0124521.	2.5	163
8	Correlating neurobehavioral performance with biomarkers of organophosphorous pesticide exposure. NeuroToxicology, 2011, 32, 268-276.	3.0	159
9	Chlorpyrifos exerts opposing effects on axonal and dendritic growth in primary neuronal cultures. Toxicology and Applied Pharmacology, 2005, 207, 112-124.	2.8	147
10	Workgroup Report: Incorporating In Vitro Alternative Methods for Developmental Neurotoxicity into International Hazard and Risk Assessment Strategies. Environmental Health Perspectives, 2007, 115, 924-931.	6.0	145
11	Developmental Exposure to Polychlorinated Biphenyls Interferes with Experience-Dependent Dendritic Plasticity and Ryanodine Receptor Expression in Weanling Rats. Environmental Health Perspectives, 2009, 117, 426-435.	6.0	143
12	Distinct spatial localization of specific mRNAs in cultured sympathetic neurons. Neuron, 1990, 5, 809-819.	8.1	139
13	Noncholinesterase Mechanisms of Chlorpyrifos Neurotoxicity: Altered Phosphorylation of Ca2+/cAMP Response Element Binding Protein in Cultured Neurons. Toxicology and Applied Pharmacology, 2002, 182, 176-185.	2.8	131
14	Intravenous Administration of Bone Morphogenetic Protein-7 After Ischemia Improves Motor Function in Stroke Rats. Stroke, 2003, 34, 558-564.	2.0	126
15	Nanoporous Gold as a Neural Interface Coating: Effects of Topography, Surface Chemistry, and Feature Size. ACS Applied Materials & Samp; Interfaces, 2015, 7, 7093-7100.	8.0	123
16	Neurotoxicity of polychlorinated biphenyls and related organohalogens. Acta Neuropathologica, 2019, 138, 363-387.	7.7	123
17	A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation. Journal of Neuroinflammation, 2020, 17, 155.	7.2	121
18	Interferon \hat{I}^3 Induces Retrograde Dendritic Retraction and Inhibits Synapse Formation. Journal of Neuroscience, 2002, 22, 4530-4539.	3.6	119

#	Article	IF	CITATIONS
19	PCB-95 Promotes Dendritic Growth via Ryanodine Receptor–Dependent Mechanisms. Environmental Health Perspectives, 2012, 120, 997-1002.	6.0	117
20	PCB-95 Modulates the Calcium-Dependent Signaling Pathway Responsible for Activity-Dependent Dendritic Growth. Environmental Health Perspectives, 2012, 120, 1003-1009.	6.0	116
21	Chlorpyrifos-Oxon Disrupts Zebrafish Axonal Growth and Motor Behavior. Toxicological Sciences, 2011, 121, 146-159.	3.1	106
22	Neuronal connectivity as a convergent target of gene $\tilde{A}-$ environment interactions that confer risk for Autism Spectrum Disorders. Neurotoxicology and Teratology, 2013, 36, 3-16.	2.4	104
23	Advancing the science of developmental neurotoxicity (DNT): testing for better safety evaluation. ALTEX: Alternatives To Animal Experimentation, 2012, 29, 202-215.	1.5	101
24	In vitro and other alternative approaches to developmental neurotoxicity testing (DNT). Environmental Toxicology and Pharmacology, 2005, 19, 735-744.	4.0	99
25	Polychlorinated biphenyls induce caspase-dependent cell death in cultured embryonic rat hippocampal but not cortical neurons via activation of the ryanodine receptor. Toxicology and Applied Pharmacology, 2003, 190, 72-86.	2.8	98
26	DNA methylation: a mechanism linking environmental chemical exposures to risk of autism spectrum disorders?. Environmental Epigenetics, 2016, 2, dvv012.	1.8	96
27	Laminin and a basement membrane extract have different effects on axonal and dendritic outgrowth from embryonic rat sympathetic neurons in vitro. Developmental Biology, 1989, 136, 330-345.	2.0	95
28	Laminin selectively enhances axonal growth and accelerates the development of polarity by hippocampal neurons in culture. Developmental Brain Research, 1992, 69, 191-197.	1.7	94
29	Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 49-74.	1.5	94
30	Putative adverse outcome pathways relevant to neurotoxicity. Critical Reviews in Toxicology, 2015, 45, 83-91.	3.9	92
31	Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase. Toxicology and Applied Pharmacology, 2008, 228, 32-41.	2.8	91
32	Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes. Toxicology and Applied Pharmacology, 2018, 354, 3-6.	2.8	90
33	Mechanisms of Manganese-Induced Rat Pheochromocytoma (PC12) Cell Death and Cell Differentiation. NeuroToxicology, 2002, 23, 147-157.	3.0	89
34	Developmental neurotoxicity testing: recommendations for developing alternative methods for the screening and prioritization of chemicals. ALTEX: Alternatives To Animal Experimentation, 2011, 28, 9-15.	1.5	88
35	Mechanisms of neuronal polarity. Current Opinion in Neurobiology, 1997, 7, 599-604.	4.2	84
36	Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. NeuroToxicology, 2012, 33, 911-924.	3.0	84

#	Article	IF	CITATIONS
37	Biomarkers of Chlorpyrifos Exposure and Effect in Egyptian Cotton Field Workers. Environmental Health Perspectives, 2011, 119, 801-806.	6.0	83
38	Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds. Frontiers in Neuroscience, 2016, 10, 590.	2.8	82
39	The Environmental Neurotoxicant PCB 95 Promotes Synaptogenesis via Ryanodine Receptor-Dependent miR132 Upregulation. Journal of Neuroscience, 2014, 34, 717-725.	3.6	79
40	Developmental social communication deficits in the <i>Shank3</i> rat model of phelanâ€mcdermid syndrome and autism spectrum disorder. Autism Research, 2018, 11, 587-601.	3.8	78
41	Mechanisms of organophosphate insecticide-induced airway hyperreactivity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L963-L969.	2.9	76
42	Spatiotemporal pattern of neuronal injury induced by DFP in rats: A model for delayed neuronal cell death following acute OP intoxication. Toxicology and Applied Pharmacology, 2011, 253, 261-269.	2.8	75
43	Evidence Implicating Non-Dioxin-Like Congeners as the Key Mediators of Polychlorinated Biphenyl (PCB) Developmental Neurotoxicity. International Journal of Molecular Sciences, 2020, 21, 1013.	4.1	74
44	<i>Para-</i> and <i>Ortho</i> -Substitutions Are Key Determinants of Polybrominated Diphenyl Ether Activity toward Ryanodine Receptors and Neurotoxicity. Environmental Health Perspectives, 2011, 119, 519-526.	6.0	73
45	Ontogenetic Alterations in Molecular and Structural Correlates of Dendritic Growth after Developmental Exposure to Polychlorinated Biphenyls. Environmental Health Perspectives, 2007, 115, 556-563.	6.0	72
46	Persistent neuroinflammation and cognitive impairment in a rat model of acute diisopropylfluorophosphate intoxication. Journal of Neuroinflammation, 2016, 13, 267.	7.2	71
47	Developing and applying the adverse outcome pathway concept for understanding and predicting neurotoxicity. NeuroToxicology, 2017, 59, 240-255.	3.0	69
48	Persistent behavior deficits, neuroinflammation, and oxidative stress in a rat model of acute organophosphate intoxication. Neurobiology of Disease, 2020, 133, 104431.	4.4	69
49	PCB 136 Atropselectively Alters Morphometric and Functional Parameters of Neuronal Connectivity in Cultured Rat Hippocampal Neurons via Ryanodine Receptor-Dependent Mechanisms. Toxicological Sciences, 2014, 138, 379-392.	3.1	66
50	Glia Induce Dendritic Growth in Cultured Sympathetic Neurons by Modulating the Balance between Bone Morphogenetic Proteins (BMPs) and BMP Antagonists. Journal of Neuroscience, 2002, 22, 10377-10387.	3.6	64
51	Bone morphogenetic protein-5 (BMP-5) promotes dendritic growth in cultured sympathetic neurons. BMC Neuroscience, 2001, 2, 12.	1.9	63
52	Valid statistical approaches for analyzing sholl data: Mixed effects versus simple linear models. Journal of Neuroscience Methods, 2017, 279, 33-43.	2.5	62
53	Organophosphorus Insecticides Induce Airway Hyperreactivity by Decreasing Neuronal M2 Muscarinic Receptor Function Independent of Acetylcholinesterase Inhibition. Toxicological Sciences, 2004, 83, 166-176.	3.1	60
54	Comparative Analyses of the 12 Most Abundant PCB Congeners Detected in Human Maternal Serum for Activity at the Thyroid Hormone Receptor and Ryanodine Receptor. Environmental Science & Emp; Technology, 2019, 53, 3948-3958.	10.0	60

#	Article	IF	Citations
55	Transient Stimulation with Psychoplastogens Is Sufficient to Initiate Neuronal Growth. ACS Pharmacology and Translational Science, 2021, 4, 452-460.	4.9	60
56	Leukemia Inhibitory Factor and Ciliary Neurotrophic Factor Cause Dendritic Retraction in Cultured Rat Sympathetic Neurons. Journal of Neuroscience, 1999, 19, 2113-2121.	3.6	59
57	Chlorpyrifos exposures in Egyptian cotton field workers. NeuroToxicology, 2010, 31, 297-304.	3.0	58
58	The Novel GTPase Rit Differentially Regulates Axonal and Dendritic Growth. Journal of Neuroscience, 2007, 27, 4725-4736.	3.6	55
59	2,2′,3,5′,6-Pentachlorobiphenyl (PCB 95) and Its Hydroxylated Metabolites Are Enantiomerically Enriched in Female Mice. Environmental Science & Technology, 2012, 46, 11393-11401.	10.0	55
60	Neuregulin-1 inhibits neuroinflammatory responses in a rat model of organophosphate-nerve agent-induced delayed neuronal injury. Journal of Neuroinflammation, 2015, 12, 64.	7.2	54
61	Nanoporous Gold Biointerfaces: Modifying Nanostructure to Control Neural Cell Coverage and Enhance Electrophysiological Recording Performance. Advanced Functional Materials, 2017, 27, 1604631.	14.9	52
62	Detection of 3,3′-Dichlorobiphenyl in Human Maternal Plasma and Its Effects on Axonal and Dendritic Growth in Primary Rat Neurons. Toxicological Sciences, 2017, 158, 401-411.	3.1	52
63	Acute Hippocampal Slice Preparation and Hippocampal Slice Cultures. Methods in Molecular Biology, 2011, 758, 115-134.	0.9	51
64	Repeated exposure to neurotoxic levels of chlorpyrifos alters hippocampal expression of neurotrophins and neuropeptides. Toxicology, 2016, 340, 53-62.	4.2	51
65	Identification of Psychoplastogenic <i>N</i> , <i>N</i> -Dimethylaminoisotryptamine (isoDMT) Analogues through Structure–Activity Relationship Studies. Journal of Medicinal Chemistry, 2020, 63, 1142-1155.	6.4	49
66	Developmental exposure to polychlorinated biphenyls (PCBs) in the maternal diet causes host-microbe defects in weanling offspring mice. Environmental Pollution, 2019, 253, 708-721.	7.5	47
67	Expression of bone morphogenetic proteins in the brain during normal aging and in 6-hydroxydopamine-lesioned animals. Brain Research, 2003, 994, 81-90.	2.2	46
68	Immunologic and neurodevelopmental susceptibilities of autism. NeuroToxicology, 2008, 29, 532-545.	3.0	46
69	Statins Decrease Expression of the Proinflammatory Neuropeptides Calcitonin Gene-Related Peptide and Substance P in Sensory Neurons. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 1172-1180.	2.5	46
70	Developmental exposure to environmentally relevant concentrations of bifenthrin alters transcription of mTOR and ryanodine receptor-dependent signaling molecules and impairs predator avoidance behavior across early life stages in inland silversides (Menidia beryllina). Aquatic Toxicology, 2019, 206, 1-13.	4.0	46
71	In vivo and in vitro sex differences in the dendritic morphology of developing murine hippocampal and cortical neurons. Scientific Reports, 2017, 7, 8486.	3.3	45
72	Dendritic growth induced by BMP-7 requires Smad1 and proteasome activity. Journal of Neurobiology, 2001, 48, 120-130.	3.6	44

#	Article	IF	CITATIONS
73	Statins decrease dendritic arborization in rat sympathetic neurons by blocking RhoA activation. Journal of Neurochemistry, 2009, 108, 1057-1071.	3.9	44
74	Ontogeny of biochemical, morphological and functional parameters of synaptogenesis in primary cultures of rat hippocampal and cortical neurons. Molecular Brain, 2015, 8, 10.	2.6	44
75	BDE-99 impairs differentiation of human and mouse NPCs into the oligodendroglial lineage by species-specific modes of action. Scientific Reports, 2017, 7, 44861.	3.3	44
76	The developmental neurotoxicity of legacy vs. contemporary polychlorinated biphenyls (PCBs): similarities and differences. Environmental Science and Pollution Research, 2020, 27, 8885-8896.	5.3	44
77	Editor's Highlight: Spatiotemporal Progression and Remission of Lesions in the Rat Brain Following Acute Intoxication With Diisopropylfluorophosphate. Toxicological Sciences, 2017, 157, 330-341.	3.1	43
78	THE EFFECTS OF EXTRACELLULAR MATRIX AND OSTEOGENIC PROTEINâ€1 ON THE MORPHOLOGICAL DIFFERENTIATION OF RAT SYMPATHETIC NEURONS. International Journal of Developmental Neuroscience, 1996, 14, 203-215.	1.6	42
79	Tetramethylenedisulfotetramine Alters Ca2+ Dynamics in Cultured Hippocampal Neurons: Mitigation by NMDA Receptor Blockade and GABAA Receptor-Positive Modulation. Toxicological Sciences, 2012, 130, 362-372.	3.1	42
80	Cross-Talk between Fibroblast Growth Factor and Bone Morphogenetic Proteins Regulates Gap Junction-mediated Intercellular Communication in Lens Cells. Molecular Biology of the Cell, 2008, 19, 2631-2641.	2.1	41
81	Characterization of Seizures Induced by Acute and Repeated Exposure to Tetramethylenedisulfotetramine. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 435-446.	2.5	41
82	Bifenthrin causes transcriptomic alterations in mTOR and ryanodine receptor-dependent signaling and delayed hyperactivity in developing zebrafish (Danio rerio). Aquatic Toxicology, 2018, 200, 50-61.	4.0	41
83	Effects of early life exposure to traffic-related air pollution on brain development in juvenile Sprague-Dawley rats. Translational Psychiatry, 2020, 10, 166.	4.8	41
84	Animal models of autism spectrum disorders: Information for neurotoxicologists. NeuroToxicology, 2009, 30, 811-821.	3.0	40
85	Organophosphorus Pesticides Decrease M2 Muscarinic Receptor Function in Guinea Pig Airway Nerves via Indirect Mechanisms. PLoS ONE, 2010, 5, e10562.	2.5	40
86	Mechanisms of organophosphate neurotoxicity. Current Opinion in Toxicology, 2021, 26, 49-60.	5.0	40
87	Manganese induces neurite outgrowth in PC12 cells via upregulation of $\hat{l}_{\pm \nu}$ integrins. Brain Research, 2000, 885, 220-230.	2.2	39
88	Neuregulin-1 is neuroprotective in a rat model of organophosphate-induced delayed neuronal injury. Toxicology and Applied Pharmacology, 2012, 262, 194-204.	2.8	39
89	Teratological and Behavioral Screening of the National Toxicology Program 91-Compound Library in Zebrafish (<i>Danio rerio</i>). Toxicological Sciences, 2019, 167, 77-91.	3.1	39
90	Behavioral assessment of NIH Swiss mice acutely intoxicated with tetramethylenedisulfotetramine. Neurotoxicology and Teratology, 2015, 47, 36-45.	2.4	38

#	Article	IF	CITATIONS
91	Effects of thyroid hormone disruption on the ontogenetic expression of thyroid hormone signaling genes in developing zebrafish (Danio rerio). General and Comparative Endocrinology, 2019, 272, 20-32.	1.8	38
92	Polychlorinated Biphenyls (PCBs): Risk Factors for Autism Spectrum Disorder?. Toxics, 2020, 8, 70.	3.7	38
93	Extracellular Signal-Regulated Kinases Regulate Dendritic Growth in Rat Sympathetic Neurons. Journal of Neuroscience, 2004, 24, 3304-3312.	3.6	37
94	Epoxyeicosatrienoic acids enhance axonal growth in primary sensory and cortical neuronal cell cultures. Journal of Neurochemistry, 2011, 117, no-no.	3.9	37
95	Metabolism of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) atropisomers in tissue slices from phenobarbital or dexamethasone-induced rats is sex-dependent. Xenobiotica, 2013, 43, 933-947.	1.1	37
96	Mechanisms of organophosphorus pesticide toxicity in the context of airway hyperreactivity and asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L485-L501.	2.9	36
97	Antigen Sensitization Influences Organophosphorus Pesticide–Induced Airway Hyperreactivity. Environmental Health Perspectives, 2008, 116, 381-388.	6.0	35
98	Dichlorvos exposure results in large scale disruption of energy metabolism in the liver of the zebrafish, Danio rerio. BMC Genomics, 2015, 16, 853.	2.8	35
99	Susceptibility of larval zebrafish to the seizurogenic activity of GABA type A receptor antagonists. NeuroToxicology, 2020, 76, 220-234.	3.0	35
100	The Effects of Chronic Exposure to Ambient Traffic-Related Air Pollution on Alzheimer's Disease Phenotypes in Wildtype and Genetically Predisposed Male and Female Rats. Environmental Health Perspectives, 2021, 129, 57005.	6.0	35
101	Effect of leukemia inhibitory factor (LIF) on the morphology and survival of cultured hippocampal neurons and glial cells. Brain Research, 1998, 798, 140-146.	2.2	33
102	Hepatic Metabolism Affects the Atropselective Disposition of 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136 in Mice. Environmental Science & Enviro	10.0	33
103	Translational toxicology in zebrafish. Current Opinion in Toxicology, 2020, 23-24, 56-66.	5.0	33
104	Characterization of \hat{l} ±-cypermethrin exposure in Egyptian agricultural workers. International Journal of Hygiene and Environmental Health, 2014, 217, 538-545.	4.3	32
105	Leukemia inhibitory factor and ciliary neurotrophic factor regulate dendritic growth in cultures of rat sympathetic neurons. Developmental Brain Research, 1997, 104, 101-110.	1.7	31
106	Cytochrome P450 mRNA Expression in the Rodent Brain: Species-, Sex-, and Region-Dependent Differences. Drug Metabolism and Disposition, 2014, 42, 239-244.	3.3	30
107	From the Cover: Magnetic Resonance Imaging Reveals Progressive Brain Injury in Rats Acutely Intoxicated With Diisopropylfluorophosphate. Toxicological Sciences, 2017, 157, 342-353.	3.1	30
108	Developmental exposure to silver nanoparticles at environmentally relevant concentrations alters swimming behavior in zebrafish (<i>Danio rerio</i>). Environmental Toxicology and Chemistry, 2018, 37, 3018-3024.	4.3	30

#	Article	IF	Citations
109	Spatiotemporal patterns of GFAP upregulation in rat brain following acute intoxication with diisopropylfluorophosphate (DFP). Current Neurobiology, 2012, 3, 90-97.	1.0	30
110	Macrophage TNF- $\hat{l}\pm$ mediates parathion-induced airway hyperreactivity in guinea pigs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L519-L529.	2.9	29
111	Post-exposure administration of diazepam combined with soluble epoxide hydrolase inhibition stops seizures and modulates neuroinflammation in a murine model of acute TETS intoxication. Toxicology and Applied Pharmacology, 2014, 281, 185-194.	2.8	29
112	Rapid Throughput Analysis Demonstrates that Chemicals with Distinct Seizurogenic Mechanisms Differentially Alter Ca ²⁺ Dynamics in Networks Formed by Hippocampal Neurons in Culture. Molecular Pharmacology, 2015, 87, 595-605.	2.3	29
113	Translational outcomes relevant to neurodevelopmental disorders following early life exposure of rats to chlorpyrifos. Journal of Neurodevelopmental Disorders, 2020, 12, 40.	3.1	29
114	Rit signaling contributes to interferonâ€Î³â€induced dendritic retraction via p38 mitogenâ€activated protein kinase activation. Journal of Neurochemistry, 2008, 107, 1436-1447.	3.9	28
115	Longitudinal assessment of occupational exposures to the organophosphorous insecticides chlorpyrifos and profenofos in Egyptian cotton field workers. International Journal of Hygiene and Environmental Health, 2015, 218, 203-211.	4.3	28
116	Dental Pulp Stem Cells Model Early Life and Imprinted DNA Methylation Patterns. Stem Cells, 2017, 35, 981-988.	3.2	28
117	Editor's Highlight: Congener-Specific Disposition of Chiral Polychlorinated Biphenyls in Lactating Mice and Their Offspring: Implications for PCB Developmental Neurotoxicity. Toxicological Sciences, 2017, 158, 101-115.	3.1	28
118	Placenta and fetal brain share a neurodevelopmental disorder DNA methylation profile in a mouse model of prenatal PCB exposure. Cell Reports, 2022, 38, 110442.	6.4	27
119	Oxygen Tension Modulates Differentiation and Primary Macrophage Functions in the Human Monocytic THP-1 Cell Line. PLoS ONE, 2013, 8, e54926.	2.5	26
120	Experimental strategy for translational studies of organophosphorus pesticide neurotoxicity based on real-world occupational exposures to chlorpyrifos. NeuroToxicology, 2012, 33, 660-668.	3.0	25
121	Reactive oxygen species are involved in BMP-induced dendritic growth in cultured rat sympathetic neurons. Molecular and Cellular Neurosciences, 2015, 67, 116-125.	2.2	25
122	A magnetic resonance imaging study of early brain injury in a rat model of acute DFP intoxication. NeuroToxicology, 2018, 66, 170-178.	3.0	25
123	PCB 95 promotes dendritic growth in primary rat hippocampal neurons via mTOR-dependent mechanisms. Archives of Toxicology, 2018, 92, 3163-3173.	4.2	25
124	A national toxicology program systematic review of the evidence for long-term effects after acute exposure to sarin nerve agent. Critical Reviews in Toxicology, 2020, 50, 474-490.	3.9	25
125	Protein synthesis is required for the initiation of dendritic growth in embryonic rat sympathetic neurons in vitro. Developmental Brain Research, 1991, 60, 187-196.	1.7	24
126	Models to identify treatments for the acute and persistent effects of seizureâ€inducing chemical threat agents. Annals of the New York Academy of Sciences, 2016, 1378, 124-136.	3.8	24

#	Article	IF	Citations
127	Linoleic acidâ€derived metabolites constitute the majority of oxylipins in the rat pup brain and stimulate axonal growth in primary rat cortical neuronâ€glia coâ€cultures in a sexâ€dependent manner. Journal of Neurochemistry, 2020, 152, 195-207.	3.9	24
128	Developmental Exposure to Polychlorinated Biphenyls Influences Stroke Outcome in Adult Rats. Environmental Health Perspectives, 2008, 116, 474-480.	6.0	23
129	Allele and Genotype Frequencies of CYP2B6 and CYP2C19 Polymorphisms in Egyptian Agricultural Workers. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2012, 75, 232-241.	2.3	23
130	Metabolism of profenofos to 4-bromo-2-chlorophenol, a specific and sensitive exposure biomarker. Toxicology, 2013, 306, 35-39.	4.2	23
131	Combined treatment with diazepam and allopregnanolone reverses tetramethylenedisulfotetramine (TETS)-induced calcium dysregulation in cultured neurons and protects TETS-intoxicated mice against lethal seizures. Neuropharmacology, 2015, 95, 332-342.	4.1	23
132	$3,3\hat{E}^1$ -Dichlorobiphenyl (PCB 11) promotes dendritic arborization in primary rat cortical neurons via a CREB-dependent mechanism. Archives of Toxicology, 2018, 92, 3337-3345.	4.2	23
133	Acute peripheral immune activation alters cytokine expression and glial activation in the early postnatal rat brain. Journal of Neuroinflammation, 2019, 16, 200.	7.2	23
134	Effect of Pregnancy on the Disposition of 2,2′,3,5′,6-Pentachlorobiphenyl (PCB 95) Atropisomers and Their Hydroxylated Metabolites in Female Mice. Chemical Research in Toxicology, 2015, 28, 1774-1783.	3.3	22
135	Species and Sex Differences in the Morphogenic Response of Primary Rodent Neurons to $3,3\hat{a}\in^2$ -Dichlorobiphenyl (PCB 11). Toxics, 2018, 6, 4.	3.7	22
136	Pathological Cardiopulmonary Evaluation of Rats Chronically Exposed to Traffic-Related Air Pollution. Environmental Health Perspectives, 2020, 128, 127003.	6.0	22
137	High abundant protein removal from rodent blood for biomarker discovery. Biochemical and Biophysical Research Communications, 2014, 455, 84-89.	2.1	21
138	Organophosphorus Pesticides Induce Cytokine Release from Differentiated Human THP1 Cells. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 620-630.	2.9	21
139	Developmental exposure to near roadway pollution produces behavioral phenotypes relevant to neurodevelopmental disorders in juvenile rats. Translational Psychiatry, 2020, 10, 289.	4.8	21
140	Acute administration of diazepam or midazolam minimally alters long-term neuropathological effects in the rat brain following acute intoxication with diisopropylfluorophosphate. European Journal of Pharmacology, 2020, 886, 173538.	3.5	21
141	Pharmacokinetics and pharmacodynamics of chlorpyrifos in adult male Long-Evans rats following repeated subcutaneous exposure to chlorpyrifos. Toxicology, 2011, 287, 137-144.	4.2	20
142	Phenobarbital use and neurological problems in FMR1 premutation carriers. NeuroToxicology, 2016, 53, 141-147.	3.0	20
143	Opportunities and challenges for using the zebrafish to study neuronal connectivity as an endpoint of developmental neurotoxicity. NeuroToxicology, 2018, 67, 102-111.	3.0	20
144	Fc gamma receptors are expressed in the developing rat brain and activate downstream signaling molecules upon cross-linking with immune complex. Journal of Neuroinflammation, 2018, 15, 7.	7.2	20

#	Article	IF	Citations
145	Neuroinflammation in organophosphate-induced neurotoxicity. Advances in Neurotoxicology, 2019, 3, 35-79.	1.9	20
146	TSPO PET Using [18F]PBR111 Reveals Persistent Neuroinflammation Following Acute Diisopropylfluorophosphate Intoxication in the Rat. Toxicological Sciences, 2019, 170, 330-344.	3.1	20
147	The chemical convulsant diisopropylfluorophosphate (DFP) causes persistent neuropathology in adult male rats independent of seizure activity. Archives of Toxicology, 2020, 94, 2149-2162.	4.2	20
148	Bone morphogenetic proteins regulate ionotropic glutamate receptors in human retina. European Journal of Neuroscience, 2004, 20, 2031-2037.	2.6	19
149	Sex-Dependent Effects of 2,2′,3,5′,6-Pentachlorobiphenyl on Dendritic Arborization of Primary Mouse Neurons. Toxicological Sciences, 2019, 168, 95-109.	3.1	19
150	Allopregnanolone and perampanel as adjuncts to midazolam for treating diisopropylfluorophosphateâ€induced status epilepticus in rats. Annals of the New York Academy of Sciences, 2020, 1480, 183-206.	3.8	19
151	BDE-47 and BDE-49 Inhibit Axonal Growth in Primary Rat Hippocampal Neuron-Glia Co-Cultures via Ryanodine Receptor-Dependent Mechanisms. Toxicological Sciences, 2017, 156, kfw259.	3.1	18
152	Changes in thyroid hormone activity disrupt photomotor behavior of larval zebrafish. NeuroToxicology, 2019, 74, 47-57.	3.0	18
153	PON1 status does not influence cholinesterase activity in Egyptian agricultural workers exposed to chlorpyrifos. Toxicology and Applied Pharmacology, 2012, 265, 308-315.	2.8	17
154	A multi-tiered, in vivo, quantitative assay suite for environmental disruptors of thyroid hormone signaling. Aquatic Toxicology, 2017, 190, 1-10.	4.0	17
155	Magnitude of behavioral deficits varies with job-related chlorpyrifos exposure levels among Egyptian pesticide workers. NeuroToxicology, 2020, 77, 216-230.	3.0	17
156	Developmental Exposure to a Human-Relevant Polychlorinated Biphenyl Mixture Causes Behavioral Phenotypes That Vary by Sex and Genotype in Juvenile Mice Expressing Human Mutations That Modulate Neuronal Calcium. Frontiers in Neuroscience, 2021, 15, 766826.	2.8	17
157	Mechanisms of Reduced Astrocyte Surface Coverage in Cortical Neuron-Glia Co-cultures on Nanoporous Gold Surfaces. Cellular and Molecular Bioengineering, 2016, 9, 433-442.	2.1	16
158	Chasing the Elusive Benzofuran Impurity of the THR Antagonist NH-3: Synthesis, Isotope Labeling, and Biological Activity. Journal of Organic Chemistry, 2016, 81, 1870-1876.	3.2	16
159	Simultaneous quantification of T4, T3, rT3, 3,5â€₹2 and 3,3′â€₹2 in larval zebrafish (<scp><i>Danio) Tj ETQq1 Chromatography, 2018, 32, e4185.</i></scp>	1 0.78431 1.7	4 rgBT /Ove
160	Genetic mutations in Ca ²⁺ signaling alter dendrite morphology and social approach in juvenile mice. Genes, Brain and Behavior, 2019, 18, e12526.	2.2	16
161	Polychlorinated biphenyls increase apoptosis in the developing rat brain. Current Neurobiology, 2010, 1, 70-76.	1.0	16
162	Subacute nicotine co-exposure has no effect on $2,2\hat{a}\in ^2,3,5\hat{a}\in ^2,6$ - pentachlorobiphenyl disposition but alters hepatic cytochrome P450 expression in the male rat. Toxicology, 2015, 338, 59-68.	4.2	15

#	Article	IF	Citations
163	Neuroinflammation as a Therapeutic Target for Mitigating the Long-Term Consequences of Acute Organophosphate Intoxication. Frontiers in Pharmacology, 2021, 12, 674325.	3.5	15
164	Evidence for Environmental Susceptibility in Autism. , 2008, , 409-428.		15
165	Transcriptional Responses of Cultured Rat Sympathetic Neurons during BMP-7-Induced Dendritic Growth. PLoS ONE, 2011, 6, e21754.	2.5	14
166	Effects of cytokines on nuclear factor-kappa B, cell viability, and synaptic connectivity in a human neuronal cell line. Molecular Psychiatry, 2021, 26, 875-887.	7.9	14
167	Mutagenic activity of surface waters adjacent to a nuclear fuel processing facility. Archives of Environmental Contamination and Toxicology, 1987, 16, 531-537.	4.1	13
168	BMP7â€induced dendritic growth in sympathetic neurons requires p75 ^{NTR} signaling. Developmental Neurobiology, 2016, 76, 1003-1013.	3.0	13
169	The Organophosphorus Pesticide Chlorpyrifos Induces Sex-Specific Airway Hyperreactivity in Adult Rats. Toxicological Sciences, 2018, 165, 244-253.	3.1	13
170	Pretreatment with pyridostigmine bromide has no effect on seizure behavior or 24 hour survival in the rat model of acute diisopropylfluorophosphate intoxication. NeuroToxicology, 2019, 73, 81-84.	3.0	13
171	Noncholinesterase Mechanisms of Central and Peripheral Neurotoxicity., 2006,, 233-245.		12
172	Ontogenetic expression of thyroid hormone signaling genes: An in vitro and in vivo species comparison. PLoS ONE, 2019, 14, e0221230.	2.5	12
173	The influence of sex, genotype, and dose on serum and hippocampal cytokine levels in juvenile mice developmentally exposed to a human-relevant mixture of polychlorinated biphenyls. Current Research in Toxicology, 2020, 1, 85-103.	2.7	12
174	Microcystins Alter Chemotactic Behavior in Caenorhabditis elegans by Selectively Targeting the AWA Sensory Neuron. Toxins, 2014, 6, 1813-1836.	3.4	11
175	Application of the Neurosphere Assay for DNT Hazard Assessment: Challenges and Limitations. Methods in Pharmacology and Toxicology, 2015, , 1.	0.2	11
176	Increased severity of fragile X spectrum disorders in the agricultural community of Ricaurte, Colombia. International Journal of Developmental Neuroscience, 2019, 72, 1-5.	1.6	10
177	Assessment of Autism Zebrafish Mutant Models Using a High-Throughput Larval Phenotyping Platform. Frontiers in Cell and Developmental Biology, 2020, 8, 586296.	3.7	10
178	Comparison of the toxicokinetics of the convulsants picrotoxinin and tetramethylenedisulfotetramine (TETS) in mice. Archives of Toxicology, 2020, 94, 1995-2007.	4.2	10
179	Glioma-associated microglia/macrophages augment tumorigenicity in canine astrocytoma, a naturally occurring model of human glioma. Neuro-Oncology Advances, 2021, 3, vdab062.	0.7	10
180	Developmental exposure to DDT or DDE alters sympathetic innervation of brown adipose in adult female mice. Environmental Health, 2021, 20, 37.	4.0	10

#	Article	IF	CITATIONS
181	The Influence of Sensitization on Mechanisms of Organophosphorus Pesticide–Induced Airway Hyperreactivity. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 738-747.	2.9	9
182	A Microfluidic Platform to Study Astrocyte Adhesion on Nanoporous Gold Thin Films. Nanomaterials, 2018, 8, 452.	4.1	9
183	Linoleic acid-derived 13-hydroxyoctadecadienoic acid is absorbed and incorporated into rat tissues. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158870.	2.4	9
184	Iron Deficiency and Iron Excess Differently Affect Dendritic Architecture of Pyramidal Neurons in the Hippocampus of Piglets. Journal of Nutrition, 2021, 151, 235-244.	2.9	9
185	Lipidomes of brain from rats acutely intoxicated with diisopropylfluorophosphate identifies potential therapeutic targets. Toxicology and Applied Pharmacology, 2019, 382, 114749.	2.8	8
186	MicroRNAs are Necessary for BMP-7-induced Dendritic Growth in Cultured Rat Sympathetic Neurons. Cellular and Molecular Neurobiology, 2019, 39, 917-934.	3.3	8
187	The efficacy of \hat{I}^3 -aminobutyric acid type A receptor (GABA AR) subtype-selective positive allosteric modulators in blocking tetramethylenedisulfotetramine (TETS)-induced seizure-like behavior in larval zebrafish with minimal sedation. Toxicology and Applied Pharmacology, 2021, 426, 115643.	2.8	8
188	Persistent neuropathology and behavioral deficits in a mouse model of status epilepticus induced by acute intoxication with diisopropylfluorophosphate. NeuroToxicology, 2021, 87, 106-119.	3.0	8
189	Effects of bone morphogenetic proteins on neural tissues. , 2002, , 289-319.		8
190	A Novel Carboline Derivative Inhibits Nitric Oxide Formation in Macrophages Independent of Effects on Tumor Necrosis Factor <i>$\hat{l}\pm \langle i \rangle$ and Interleukin-1 <i>$\hat{l}^2 \langle i \rangle$ Expression. Journal of Pharmacology and Experimental Therapeutics, 2015, 352, 438-447.</i></i>	2.5	7
191	Nanostructure Introduces Artifacts in Quantitative Immunofluorescence by Influencing Fluorophore Intensity. Scientific Reports, 2017, 7, 427.	3.3	7
192	The Use of Percent Change in RR Interval for Data Exclusion in Analyzing 24-h Time Domain Heart Rate Variability in Rodents. Frontiers in Physiology, 2019, 10, 693.	2.8	7
193	Automated high content image analysis of dendritic arborization in primary mouse hippocampal and rat cortical neurons in culture. Journal of Neuroscience Methods, 2020, 341, 108793.	2.5	7
194	Sex-specific acute and chronic neurotoxicity of acute diisopropylfluorophosphate (DFP)-intoxication in juvenile Sprague-Dawley rats. Current Research in Toxicology, 2021, 2, 341-356.	2.7	7
195	Transcriptomic profiling of mTOR and ryanodine receptor signaling molecules in developing zebrafish in the absence and presence of PCB 95. Peerl, 2017, 5, e4106.	2.0	7
196	Chronic exposure to ambient traffic-related air pollution (TRAP) alters gut microbial abundance and bile acid metabolism in a transgenic rat model of Alzheimer's disease. Toxicology Reports, 2022, 9, 432-444.	3.3	7
197	Cyclin D2-knock-out mice with attenuated dentate gyrus neurogenesis have robust deficits in long-term memory formation. Scientific Reports, 2020, 10, 8204.	3.3	6

198 Investigation of NH3 as a selective thyroid hormone receptor modulator in larval zebrafish (Danio) Tj ETQq0 0 0 rgBT_Overlock 10 Tf 50

#	Article	IF	CITATIONS
199	In utero and lactational PCB exposure drives anatomic changes in the juvenile mouse bladder. Current Research in Toxicology, 2021, 2, 1-18.	2.7	6
200	Sex and Genotype Modulate the Dendritic Effects of Developmental Exposure to a Human-Relevant Polychlorinated Biphenyls Mixture in the Juvenile Mouse. Frontiers in Neuroscience, 2021, 15, 766802.	2.8	6
201	Inducing Dendritic Growth in Cultured Sympathetic Neurons. Journal of Visualized Experiments, 2012,	0.3	5
202	Disposition of PCB 11 in Mice Following Acute Oral Exposure. Chemical Research in Toxicology, 2021, 34, 988-991.	3.3	5
203	IFN \hat{I}^3 Increases M2 Muscarinic Receptor Expression in Cultured Sympathetic Neurons. Current Neurobiology, 2011, 2, 23-29.	1.0	5
204	Nucleic acid binding agents exert local toxic effects on neurites via a non-nuclear mechanism. Journal of Neurochemistry, 2006, 96, 1253-1266.	3.9	4
205	Overview of the Role of Environmental Factors in Neurodevelopmental Disorders. , 2015, , 3-20.		3
206	Gene-environment interactions determine risk for dementia: the influence of lifestyle on genetic risk for dementia. Annals of Translational Medicine, 2019, 7, S322-S322.	1.7	3
207	Commentary: Fc Gamma Receptors are Expressed in the Developing Rat Brain and Activate Downstream Signaling Molecules upon Cross-Linking with Immune Complex. Journal of Neurology and Neuromedicine, 2019, 4, 26-29.	0.9	3
208	Review of evidence implicating the plasminogen activator system in blood-brain barrier dysfunction associated with Alzheimer's disease. , 2022, 2, .		3
209	Triiodothyronine or Antioxidants Block the Inhibitory Effects of BDE-47 and BDE-49 on Axonal Growth in Rat Hippocampal Neuron-Glia Co-Cultures. Toxics, 2022, 10, 92.	3.7	3
210	Emulating Near-Roadway Exposure to Traffic-Related Air Pollution via Real-Time Emissions from a Major Freeway Tunnel System. Environmental Science & E	10.0	3
211	Effect of short-term exposure to hexachlorophene on rat brain cell specific marker enzymes. Fundamental and Applied Toxicology, 1988, 11, 519-527.	1.8	2
212	Emerging concepts in neurotoxicology: Models, mechanisms and modifying factors. NeuroToxicology, 2012, 33, 516-517.	3.0	2
213	Regulation of Dendritogenesis in Sympathetic Neurons. , 2018, , .		2
214	Factors influencing adverse skin responses in rats receiving repeated subcutaneous injections and potential impact on neurobehavior. Current Neurobiology, 2014, 5, 1-10.	1.0	2
215	Cellular and Molecular Mechanisms of PCB Developmental Neurotoxicity., 2022, , 1-30.		2
216	Hippocampal but Not Serum Cytokine Levels Are Altered by Traffic-Related Air Pollution in TgF344-AD and Wildtype Fischer 344 Rats in a Sex- and Age-Dependent Manner. Frontiers in Cellular Neuroscience, 2022, 16, 861733.	3.7	2

#	Article	IF	Citations
217	Chronic exposure to traffic-related air pollution reduces lipid mediators of linoleic acid and soluble epoxide hydrolase in serum of female rats. Environmental Toxicology and Pharmacology, 2022, 93, 103875.	4.0	2
218	Apoptosis as a Mechanism of Developmental Neurotoxicity. , 2018, , 91-112.		1
219	Developmental Toxicity Within the Central Cholinergic Nervous System. , 2018, , 183-198.		1
220	Iron Deficiency and Iron Excess Alter Dendritic Architecture of Pyramidal Neurons in the Hippocampus of Neonatal Pigs. Current Developments in Nutrition, 2020, 4, nzaa057_048.	0.3	1
221	Preface to the NeuroToxicology Special Issue, "Mercury in fish: The Seychelles child development study― NeuroToxicology, 2020, 79, 211.	3.0	1
222	Strain differences in the extent of brain injury in mice after tetramethylenedisulfotetramine-induced status epilepticus. NeuroToxicology, 2021, 87, 43-50.	3.0	1
223	Bone morphogenetic proteins in the nervous system. , 2004, , 245-266.		1
224	Neurotoxicity., 2005,, 206-218.		1
225	Neuroinflammatory Responses in a Mouse Model of Tetramethylenedisulfotetramineâ€Induced Status Epilepticus. FASEB Journal, 2018, 32, lb645.	0.5	1
226	Method for Shipping Live Cultures of Dissociated Rat Hippocampal Neurons. Current Neurobiology, 2010, 1, 95-98.	1.0	1
227	Antibodies to integrins inhibit dendritic growth in rat sympathetic neurons. Biomedical Research (Aligarh, India), 1996, 7, 101-111.	0.1	1
228	Effect of Short-Term Exposure to Hexachlorophene on Rat Brain Marker Enzymes. Toxicological Sciences, 1988, 11, 519-527.	3.1	0
229	34.1 GENETIC MUTATIONS AND ENVIRONMENTAL FACTORS THAT PROMOTE ADVERSE NEURODEVELOPMENTAL OUTCOMES IN PRECLINICAL MODELS. Journal of the American Academy of Child and Adolescent Psychiatry, 2019, 58, S351.	0.5	0
230	Editorial: influence of the microbiome on neurotoxic outcomes. NeuroToxicology, 2020, 77, 29.	3.0	0
231	19.3 DEVELOPMENTAL EXPOSURE TO NEAR-ROADWAY POLLUTION PRODUCES BEHAVIORAL AND HISTOLOGICAL PHENOTYPES RELEVANT TO NEURODEVELOPMENTAL DISORDERS. Journal of the American Academy of Child and Adolescent Psychiatry, 2020, 59, S294-S295.	0.5	0
232	Establishing the Neurotoxic Impact of Chlorpyrifos Exposure in Workers. , 2021, , .		0
233	Morphometric Analysis of Axons and Dendrites as a Tool for Assessing. Neuromethods, 2021, , 51-87.	0.3	0
234	Co-localization of fluorescent signals using deep learning with Manders overlapping coefficient. , 2021, 11596, .		0

#	ARTICLE	IF	CITATIONS
235	Aging Human Endothelial Cells Affect Neuronal Viability and Function. FASEB Journal, 2021, 35, .	0.5	0
236	8'â€glycinil β ―carboline inhibits nitric oxide formation but not NFâ€kBâ€mediated inflammatory responses macrophages (LB614). FASEB Journal, 2014, 28, LB614.	in 0.5	0
237	Organophosphorus pesticides increase inflammatory cytokines by activating macrophage Mac-1., 2017,,		0
238	3,3′â€Dichlorobiphenyl (PCB 11) Promotes Dendritic Arborization in Primary Neurons via CREBâ€Dependent Mechanisms. FASEB Journal, 2018, 32, 691.1.	0.5	0
239	Gamma Secretase Activity Is Necessary For BMPâ€₹â€Induced Dendritic Growth In Embryonic Sympathetic Neurons. FASEB Journal, 2018, 32, 805.13.	0.5	O
240	Developmental Exposure to Chlorpyrifos Modulates Pulmonary Function in Adult Rats. FASEB Journal, 2019, 33, 812.12.	0.5	0
241	Neuroinflammatory responses in a mouse model of acute organophosphate intoxication. FASEB Journal, 2019, 33, .	0.5	0
242	SUN-638 Perinatal DDE Exposure Disrupts Thermogenesis Early in Development. Journal of the Endocrine Society, 2020, 4, .	0.2	0
243	Cytokines Modulate the Expression of Calcitoninâ€Geneâ€Relatedâ€Peptide and Substance P in Primary Rat DRG Neuronâ€glia Coâ€cultures. FASEB Journal, 2020, 34, 1-1.	0.5	0
244	Diisopropylfluorophosphate (DFP) volatizes and cross-contaminates wells in a common 96-well plate format used in zebrafish larvae toxicology studies. Journal of Pharmacological and Toxicological Methods, 2022, 115, 107173.	0.7	0