
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/127612/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Materials and Technologies for Wastewater Treatment. Materials, 2022, 15, 1927.	2.9	1
2	Layered double hydroxides and LDH-derived materials in chosen environmental applications: a review. Environmental Science and Pollution Research, 2021, 28, 24375-24405.	5.3	73
3	Tetracycline Removal from Water by Adsorption on Geomaterial, Activated Carbon and Clay Adsorbents. Ecological Chemistry and Engineering S, 2021, 28, 303-328.	1.5	8
4	Review: Clay-Modified Electrodes in Heterogeneous Electro-Fenton Process for Degradation of Organic Compounds: The Potential of Structural Fe(III) as Catalytic Sites. Materials, 2021, 14, 7742.	2.9	4
5	Valorization of Post-consumer PP by (Un)modified Tunisian Clay Nanoparticles Incorporation. Waste and Biomass Valorization, 2020, 11, 2285-2296.	3.4	12
6	Iron-rich clay mineral synthesis using design of experiments approach. Applied Clay Science, 2020, 199, 105876.	5.2	5
7	Tailoring a hybrid three-component photoinitiating system for 3D printing. Physical Chemistry Chemical Physics, 2020, 22, 20507-20514.	2.8	4
8	Thermal decomposition of a layered double hydroxide as a bottom up approach for the synthesis of metallic nanoparticles embedded in carbon structures. New Journal of Chemistry, 2020, 44, 16721-16732.	2.8	5
9	Talc-like hybrids: influence of the synthesis. New Journal of Chemistry, 2020, 44, 10326-10333.	2.8	3
10	Laponites® for the Recovery of 133Cs, 59Co, and 88Sr from Aqueous Solutions and Subsequent Storage: Impact of Grafted Silane Loads. Materials, 2020, 13, 572.	2.9	2
11	Cleaner Synthesis of Silylated Clay Minerals for the Durable Recovery of Ions (Co ²⁺ and) Tj ETQq1 1 2104-2112.	0.784314 3.7	4 rgBT /Overlo 10
12	Design of 3D multi-layered electrospun membranes embedding iron-based layered double hydroxide for drug storage and control of sustained release. European Polymer Journal, 2020, 131, 109675.	5.4	23
13	Impact of Tunisian clay nanofillers on structure and properties of post-consumer polypropylene-based nanocomposites. Journal of Thermoplastic Composite Materials, 2019, 32, 1159-1175.	4.2	13
14	Zwitterionic-surfactant modified LAPONITE®s for removal of ions (Cs ⁺ , Sr ²⁺) Tj ETQc from aqueous wastes. Green Chemistry, 2019, 21, 5118-5127.	0 0 0 rgB1 9.0	[/Overlock 10 15
15	Mass transfer modelling in clay-based material: Estimation of apparent diffusivity of a molecule of interest. Comptes Rendus Chimie, 2019, 22, 250-257.	0.5	10
16	Inorganic and Hybrid (Organic–Inorganic) Lamellar Materials for Heavy metals and Radionuclides Capture in Energy Wastes Management—A Review. Materials, 2019, 12, 1399.	2.9	37
17	Insights on the influence of the precursors on the sol–gel synthesis of hybrid organic–inorganic saponite-like materials. Comptes Rendus Chimie, 2019, 22, 258-268.	0.5	5
18	Development of a new cathode for the electro-Fenton process combining carbon felt and iron-containing organic–inorganic hybrids. Comptes Rendus Chimie, 2019, 22, 238-249.	0.5	10

#	Article	IF	CITATIONS
19	Systems for stimuli-controlled release: Materials and applications. Journal of Controlled Release, 2019, 294, 355-371.	9.9	86
20	Co ²⁺ sorption capacity indicators of La Plata region's soils: insights and correlations with soil properties. International Journal of Environment and Health, 2019, 9, 224.	0.3	1
21	Organic–inorganic hybrids having a talc-like structure as suitable hosts to guest a wide range of species. Dalton Transactions, 2018, 47, 2925-2932.	3.3	11
22	Rheological and thermal behavior of Tunisian clay <scp>reinforced</scp> recycled polypropylene composites. Advances in Polymer Technology, 2018, 37, 3759-3768.	1.7	12
23	Synthesis of iron-rich tri-octahedral clay minerals: A review. Applied Clay Science, 2018, 166, 276-287.	5.2	12
24	7 Li{ 19 F} TEDOR NMR to observe the lithium migration in heated montmorillonite. Applied Clay Science, 2018, 157, 204-211.	5.2	9
25	Reinforcement of recycled PP polymers by nanoparticles incorporation. Green Chemistry Letters and Reviews, 2018, 11, 296-311.	4.7	42
26	Spectroscopic Studies of the Interactions between a Cationic Cyanine Dye and a Synthetic Phyllosilicate: From Photophysics to Hybrid Materials. Langmuir, 2017, 33, 6812-6818.	3.5	10
27	Interaction of titanium with smectite within the scope of a spent fuel repository: A spectroscopic approach. Clay Minerals, 2016, 51, 249-266.	0.6	4
28	Hydrolysis-condensation reactions of diethylphosphato-ethyltriethoxysilane involved in organic–inorganic talc-like hybrid synthesis: liquid and solid-state NMR investigations. RSC Advances, 2016, 6, 75715-75723.	3.6	7
29	Microelectrophoresis and inverse gas chromatography as tools to study the surface interactions between a fluorinated fungicide and raw or organically modified Patagonian montmorillonite. Applied Clay Science, 2016, 134, 83-88.	5.2	7
30	Electrospinning composite nanofibers of polyacrylonitrile/synthetic Na-montmorillonite. Journal of Industrial and Engineering Chemistry, 2016, 35, 146-152.	5.8	44
31	Radionuclide desorption kinetics on synthetic Zn/Ni-labeled montmorillonite nanoparticles. Geochimica Et Cosmochimica Acta, 2015, 148, 426-441.	3.9	14
32	Photoinduced self-assembly of carboxylic acid-terminated lamellar silsesquioxane: highly functional films for attaching and patterning amino-based ligands. RSC Advances, 2015, 5, 45703-45709.	3.6	3
33	Hydrogen adsorption and diffusion in synthetic Na-montmorillonites at high pressures and temperature. International Journal of Hydrogen Energy, 2015, 40, 2698-2709.	7.1	38
34	On the interaction of triarylmethane dye crystal violet with LAPONITE® clay: using mineral nanoparticles to control the dye photophysics. Physical Chemistry Chemical Physics, 2015, 17, 16677-16681.	2.8	13
35	Key Steps Influencing the Formation of Aluminosilicate Nanotubes by the Fluoride Route. Clays and Clay Minerals, 2015, 63, 132-143.	1.3	7
36	Adsorption of Lead by Geomaterial Matrix: Adsorption Equilibrium and Kinetics. Separation Science and Technology, 2014, 49, 1416-1426.	2.5	11

#	Article	IF	CITATIONS
37	Electrospinning of PAN nanofibers incorporating SBA-15-type ordered mesoporous silica particles. European Polymer Journal, 2014, 54, 71-78.	5.4	15
38	Stripping the latex: the challenge of miniemulsion polymerization without initiator, costabilizer and surfactant. Colloid and Polymer Science, 2014, 292, 3095-3102.	2.1	3
39	Hydrophilic/Hydrophobic Film Patterning by Photodegradation of Self-Assembled Alkylsilane Multilayers and Its Applications. Langmuir, 2014, 30, 10118-10126.	3.5	10
40	UV powder coatings containing synthetic Ag-beidellite for antibacterial properties. Applied Clay Science, 2014, 96, 73-80.	5.2	8
41	Phyllosilicates synthesis: a way of accessing edges contributions in NMR and FTIR spectroscopies. Example of synthetic talc. Physics and Chemistry of Minerals, 2013, 40, 361-373.	0.8	63
42	Preparation of ferric oxide modified diatomite and its application in the remediation of As(III) species from solution. Microporous and Mesoporous Materials, 2013, 169, 185-191.	4.4	30
43	A Novel Fluoride Route for the Synthesis of Aluminosilicate Nanotubes. Nanomaterials, 2013, 3, 117-125.	4.1	7
44	Tensile and water barrier properties of cassava starch composite films reinforced by synthetic zeolite and beidellite. Journal of Food Engineering, 2013, 115, 339-346.	5.2	28
45	Head-to-head and head-to-tail multilayer n-alkylsilsesquioxane films. Comptes Rendus Chimie, 2013, 16, 897-905.	0.5	5
46	Hydrothermal Synthesis and Characterization of Ni-Al Montmorillonite-Like Phyllosilicates. Nanomaterials, 2013, 3, 48-69.	4.1	12
47	Photoinduced synthesis and ordering of lamellar n-alkylsiloxane films. Journal of Materials Chemistry, 2012, 22, 643-652.	6.7	16
48	Photopatterning of Multilayer <i>n</i> -Alkylsilane Films. Langmuir, 2012, 28, 7129-7133.	3.5	9
49	Kinetics, Thermodynamics, and Dynamics in Organosilane Self-Assembly. Journal of Physical Chemistry C, 2012, 116, 24320-24330.	3.1	13
50	Maghemite Intercalated Montmorillonite as New Nanofillers for Photopolymers. Nanomaterials, 2012, 2, 413-427.	4.1	8
51	Elaboration of copper hydroxide phase modified diatomite and their application in lead ions immobilization. New Journal of Chemistry, 2011, 35, 461-468.	2.8	11
52	Self-Organized Poly(<i>n</i> -octadecylsilsesquioxane) Films via Sol–Gel Photopolymerization. Langmuir, 2011, 27, 12621-12629.	3.5	17
53	Dissolution kinetics of synthetic Na-smectite. An integrated experimental approach. Geochimica Et Cosmochimica Acta, 2011, 75, 5849-5864.	3.9	44
54	Tandem cationic and sol–gel photopolymerizations of a vinyl ether alkoxysilane. Polymer Engineering and Science, 2011, 51, 1466-1475.	3.1	9

#	Article	IF	CITATIONS
55	U(VI) Sorption and Reduction by Fe(II) Sorbed on Montmorillonite. Environmental Science & Technology, 2010, 44, 3779-3785.	10.0	125
56	Rapid synthesis of aluminium polycations by microwave assisted hydrolysis of aluminium via decomposition of urea and preparation of Al-pillared montmorillonite. Applied Clay Science, 2010, 48, 138-145.	5.2	23
57	Bridged polysilsesquioxane films via photoinduced sol–gel chemistry. New Journal of Chemistry, 2010, 34, 1068.	2.8	24
58	Functionalization of synthetic talc-like phyllosilicates by alkoxyorganosilane grafting. Journal of Materials Chemistry, 2010, 20, 9695.	6.7	59
59	Elaboration and characterisation of new mesoporous materials from diatomite and charcoal. Microporous and Mesoporous Materials, 2008, 107, 219-226.	4.4	102
60	Cation exchanged Fe(II) and Sr compared to other divalent cations (Ca,Mg) in the bure Callovian–Oxfordian formation: Implications for porewater composition modelling. Applied Geochemistry, 2008, 23, 641-654.	3.0	39
61	Hydration and hydrolysys of Sm ³⁺ and Eu ³⁺ in a clay interlayer: a neutron diffraction study with isotopic substitution. Radiochimica Acta, 2008, 96, 679-683.	1.2	5
62	Hydration and hydrolysis of samarium (III) in montmorillonite clay: a neutron diffraction study. Journal of Physics Condensed Matter, 2008, 20, 104207.	1.8	6
63	Functionalized clay heterostructures for reducing cadmium and lead uptake by plants in contaminated soils. Applied Clay Science, 2007, 37, 12-22.	5.2	26
64	Reversible surface-sorption-induced electron-transfer oxidation of Fe(II) at reactive sites on a synthetic clay mineral. Geochimica Et Cosmochimica Acta, 2007, 71, 863-876.	3.9	71
65	Electron transfer at the mineral/water interface: Selenium reduction by ferrous iron sorbed on clay. Geochimica Et Cosmochimica Acta, 2007, 71, 5731-5749.	3.9	181
66	Dynamic sorption of ionizable organic compounds (IOCs) and xylene from water using geomaterial-modified montmorillonite. Journal of Hazardous Materials, 2007, 147, 738-745.	12.4	14
67	One-Step Synthesis and Solvent-Induced Exfoliation of Hybrid Organic–Inorganic Phyllosilicate-Like Materials. Journal of Nanoscience and Nanotechnology, 2006, 6, 352-359.	0.9	21
68	Study of individual Na-montmorillonite particles size, morphology, and apparent charge. Journal of Colloid and Interface Science, 2005, 285, 719-730.	9.4	124
69	Catalytic performances of pillared beidellites compared to ultrastable Y zeolites in hydrocracking and hydroisomerisation reactions. Studies in Surface Science and Catalysis, 2000, 130, 293-298.	1.5	16