
Md Islam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1275419/publications.pdf Version: 2024-02-01

Molsiam

#	Article	IF	CITATIONS
1	Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 2019, 7, 103248.	6.7	565
2	Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Chemosphere, 2019, 231, 393-404.	8.2	195
3	Biochar surface complexation and Ni(II), Cu(II), and Cd(II) adsorption in aqueous solutions depend on feedstock type. Science of the Total Environment, 2020, 712, 136538.	8.0	137
4	The impacts of ozonation on oil sands process-affected water biodegradability and biofilm formation characteristics in bioreactors. Bioresource Technology, 2013, 130, 269-277.	9.6	89
5	Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas. Environmental Pollution, 2021, 281, 117094.	7.5	76
6	Carboxyl and hydroxyl groups enhance ammonium adsorption capacity of iron (III) chloride and hydrochloric acid modified biochars. Bioresource Technology, 2020, 309, 123390.	9.6	64
7	Advanced Analytical Mass Spectrometric Techniques and Bioassays to Characterize Untreated and Ozonated Oil Sands Process-Affected Water. Environmental Science & Technology, 2014, 48, 11090-11099.	10.0	55
8	Microbial community structure and operational performance of a fluidized bed biofilm reactor treating oil sands process-affected water. International Biodeterioration and Biodegradation, 2014, 91, 111-118.	3.9	54
9	lsotherm and kinetic studies on adsorption of oil sands process-affected water organic compounds using granular activated carbon. Chemosphere, 2018, 202, 716-725.	8.2	53
10	Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds. Journal of Environmental Management, 2015, 152, 49-57.	7.8	48
11	Photocatalytic performance assessment of GO and Ag co-synthesized TiO2 nanocomposite for the removal of methyl orange dye under solar irradiation. Environmental Technology and Innovation, 2021, 22, 101537.	6.1	47
12	Heat-activated potassium persulfate treatment of Sudan Black B dye: Degradation kinetic and thermodynamic studies. Journal of Water Process Engineering, 2021, 39, 101690.	5.6	42
13	The Analysis of Goldfish (Carassius auratus L.) Innate Immune Responses After Acute and Subchronic Exposures to Oil Sands Process-Affected Water. Toxicological Sciences, 2014, 138, 59-68.	3.1	37
14	Next-Generation Pyrosequencing Analysis of Microbial Biofilm Communities on Granular Activated Carbon in Treatment of Oil Sands Process-Affected Water. Applied and Environmental Microbiology, 2015, 81, 4037-4048.	3.1	34
15	The impact of various ozone pretreatment doses on the performance of endogenous microbial communities for the remediation of oil sands process-affected water. International Biodeterioration and Biodegradation, 2015, 100, 17-28.	3.9	32
16	Comparative degradation study of remazol black B dye using electro-coagulation and electro-Fenton process: Kinetics and cost analysis. Environmental Nanotechnology, Monitoring and Management, 2020, 14, 100335.	2.9	32
17	Mechanistic investigation of industrial wastewater naphthenic acids removal using granular activated carbon (GAC) biofilm based processes. Science of the Total Environment, 2016, 541, 238-246.	8.0	30
18	Understanding the similarities and differences between ozone and peroxone in the degradation of naphthenic acids: Comparative performance for potential treatment. Chemosphere, 2017, 180, 149-159.	8.2	27

Md Islam

#	Article	IF	CITATIONS
19	Impact of ozonation pre-treatment of oil sands process-affected water on the operational performance of a GAC-fluidized bed biofilm reactor. Biodegradation, 2014, 25, 811-823.	3.0	26
20	Sudan black B dye degradation in aqueous solution by Fenton oxidation process: Kinetics and cost analysis. Case Studies in Chemical and Environmental Engineering, 2021, 4, 100126.	6.1	25
21	Prediction of naphthenic acid species degradation by kinetic and surrogate models during the ozonation of oil sands process-affected water. Science of the Total Environment, 2014, 493, 282-290.	8.0	23
22	Dynamics of microbial community structure and nutrient removal from an innovative side-stream enhanced biological phosphorus removal process. Journal of Environmental Management, 2017, 198, 300-307.	7.8	22
23	MoO3 and Ag co-synthesized TiO2 as a novel heterogeneous photocatalyst with enhanced visible-light-driven photocatalytic activity for methyl orange dye degradation. Environmental Nanotechnology, Monitoring and Management, 2019, 12, 100244.	2.9	21
24	Recent advances and perspective of electrocoagulation in the treatment of wastewater: A review. Environmental Nanotechnology, Monitoring and Management, 2022, 17, 100643.	2.9	19
25	A comparative study of microbial dynamics and phosphorus removal for a two side-stream wastewater treatment processes. RSC Advances, 2017, 7, 45938-45948.	3.6	15
26	Solar-TiO2 immobilized photocatalytic reactors performance assessment in the degradation of methyl orange dye in aqueous solution. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100514.	2.9	11
27	Physicoâ€Chemical Processes. Water Environment Research, 2010, 82, 997-1072.	2.7	10
28	A novel and highly efficient Ag and GO co-synthesized ZnO nano photocatalyst for methylene blue dye degradation under UV irradiation. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100495.	2.9	10
29	Biological Fixed Film. Water Environment Research, 2011, 83, 1150-1186.	2.7	7
30	Biological Fixed Film. Water Environment Research, 2012, 84, 1081-1113.	2.7	3
31	Biological Fixed Film. Water Environment Research, 2013, 85, 1060-1091.	2.7	3
32	Laboratory Scale Production of Commercial Grade Calcium Carbonate from Lime-Soda Process. Chemical Engineering Research Bulletin, 2008, 12, .	0.2	2
33	Biological Fixed Film. Water Environment Research, 2014, 86, 1070-1100.	2.7	0
34	From the value chain to environmental management of used lube oil: A baseline study in Bangladesh. Case Studies in Chemical and Environmental Engineering, 2021, 4, 100159.	6.1	0