Adam Prahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1275381/publications.pdf

Version: 2024-02-01

56	643	687363	677142 22 g-index
papers	citations	h-index	g-index
59	59	59	755
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Design and Structure–Activity Relationship of a Potent Furin Inhibitor Derived from Influenza Hemagglutinin. ACS Medicinal Chemistry Letters, 2021, 12, 365-372.	2.8	7
2	Application of Alanine Scanning to Determination of Amino Acids Essential for Peptide Adsorption at the Solid/Solution Interface and Binding to the Receptor: Surface-Enhanced Raman/Infrared Spectroscopy versus Bioactivity Assays. Journal of Medicinal Chemistry, 2021, 64, 8410-8422.	6.4	6
3	Lipidation of Temporin-1CEb Derivatives as a Tool for Activity Improvement, Pros and Cons of the Approach. International Journal of Molecular Sciences, 2021, 22, 6679.	4.1	2
4	Label-Free Electrochemical Test of Protease Interaction with a Peptide Substrate Modified Gold Electrode. Chemosensors, 2021, 9, 199.	3.6	4
5	Ionic liquids as signal amplifiers for the simultaneous extraction of several neurotransmitters determined by micellar electrokinetic chromatography. Talanta, 2018, 186, 119-123.	5.5	10
6	Gold nanoparticles dispersion stability under dynamic coating conditions in capillary zone electrophoresis. Journal of Chromatography A, 2018, 1550, 63-67.	3.7	14
7	Macrocyclization of a potent PACE4 inhibitor: Benefits and limitations. European Journal of Cell Biology, 2017, 96, 476-485.	3.6	7
8	Positional Scanning Identifies the Molecular Determinants of a High Affinity Multi-Leucine Inhibitor for Furin and PACE4. Journal of Medicinal Chemistry, 2017, 60, 2732-2744.	6.4	9
9	Evaluation of sample injection precision in respect to sensitivity in capillary electrophoresis using various injection modes. Journal of Separation Science, 2017, 40, 1167-1175.	2.5	7
10	Potent antidiuretic agonists, deaminoâ€vasopressin and desmopressin, and their <i>inverso</i> analogs: NMR structure and interactions with micellar and liposomic models of cell membrane. Biopolymers, 2016, 106, 245-259.	2.4	2
11	Human \hat{I}^2 -defensin 4 - defensin without the "twist". Postepy Biochemii, 2016, 62, 349-361.	0.2	9
12	Tip-enhanced Raman spectroscopy of bradykinin and its B ₂ receptor antagonists adsorbed onto colloidal suspended Ag nanowires. Physical Chemistry Chemical Physics, 2015, 17, 22882-22892.	2.8	9
13	Simultaneous determination of scopolamine, hyoscyamine and anisodamine in in vitro growth media of selected Solanaceae hairy roots by CE method. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 1001, 17-21.	2.3	5
14	Simultaneous Separation of Eight Benzodiazepines in Human Urine Using Field-Amplified Sample Stacking Micellar Electrokinetic Chromatography. Journal of Analytical Toxicology, 2015, 39, 436-443.	2.8	7
15	Arginine-, d-arginine-vasopressin, and their inverso analogues in micellar and liposomic models of cell membrane: CD, NMR, and molecular dynamics studies. European Biophysics Journal, 2015, 44, 727-743.	2.2	8
16	Interaction of Bradykinin and B2Bradykinin Receptor Antagonists with Colloidal Au Surface Explored by Surface-Enhanced Raman Scattering. Journal of Spectroscopy, 2014, 2014, 1-8.	1.3	3
17	Improvement of derivatized amino acid detection sensitivity in micellar electrokinetic capillary chromatography by means of acid-induced pH-mediated stacking technique. Analytical and Bioanalytical Chemistry, 2014, 406, 6713-6721.	3.7	11
18	Design, Synthesis, and Structure–Activity Relationship Studies of a Potent PACE4 Inhibitor. Journal of Medicinal Chemistry, 2014, 57, 98-109.	6.4	30

#	Article	IF	CITATIONS
19	Role of Pheâ€D ₅ isotopically labeled analogues of bradykinin on elucidation of its adsorption mode on Ag, Au, and Cu electrodes. Surfaceã€enhanced Raman spectroscopy studies. Journal of Raman Spectroscopy, 2013, 44, 1096-1104.	2.5	14
20	B ₂ bradykinin receptor antagonists: adsorption mechanism on electrochemically roughened Ag substrate. Journal of Raman Spectroscopy, 2013, 44, 205-211.	2.5	7
21	Characterization of adsorption mode of new B ₂ bradykinin receptor antagonists onto colloidal Ag substrate. Journal of Raman Spectroscopy, 2013, 44, 212-218.	2.5	9
22	Influence of applied potential on bradykinin adsorption onto Ag, Au, and Cu electrodes. Journal of Raman Spectroscopy, 2013, 44, 655-664.	2.5	12
23	Design, Synthesis and Structure–Activity Relationship of New Arginine Vasopressin Analogues Containing Proline Derivatives in Position 2. Chemical Biology and Drug Design, 2013, 81, 420-428.	3.2	2
24	The Multi-Leu Peptide Inhibitor Discriminates Between PACE4 and Furin And Exhibits Antiproliferative Effects On Prostate Cancer Cells. Journal of Medicinal Chemistry, 2012, 55, 10501-10511.	6.4	49
25	Novel Bradykinin Analogues Modified in the N-Terminal Part of the Molecule with a Variety of Acyl Substituents. International Journal of Peptide Research and Therapeutics, 2012, 18, 117-124.	1.9	4
26	Design, synthesis and biological activity of new neurohypophyseal hormones analogues conformationally restricted in the N-terminal part of the molecule. Highly potent OT receptor antagonists. Amino Acids, 2012, 43, 617-627.	2.7	5
27	Highly Potent Antidiuretic Antagonists: Conformational Studies of Vasopressin Analogues Modified with 1â€Naphthylalanine Enantiomers at Position 2. Chemical Biology and Drug Design, 2012, 79, 1033-1042.	3.2	3
28	Structure and conformation of Arg ⁸ vasopressin modified analogs. Journal of Raman Spectroscopy, 2012, 43, 51-60.	2.5	19
29	Novel analogues of bradykinin conformationally restricted in the Câ€ŧerminal part of the molecule. Journal of Peptide Science, 2011, 17, 366-372.	1.4	1
30	Novel analogues of arginine vasopressin containing αâ€2â€indanylglycine enantiomers in position 2. Journal of Peptide Science, 2010, 16, 15-20.	1.4	7
31	Arginine vasopressin and its analogues – The influence of position 2 modification with 3,3-diphenylalanine enantiomers. Highly potent V2 agonists. European Journal of Medicinal Chemistry, 2009, 44, 2862-2867.	5.5	14
32	Analogues of AVP modified in the <i>N</i> â€terminal part of the molecule with Pip isomers: TFAâ€catalysed peptide bond hydrolysis. Journal of Peptide Science, 2009, 15, 161-165.	1.4	4
33	Analogues of arginine vasopressin modified at position 2 with proline derivatives: selective antagonists of oxytocin in vitro. Advances in Experimental Medicine and Biology, 2009, 611, 503-504.	1.6	1
34	New bradykinin B(2) receptor antagonists - influence of C-terminal segment modifications on their pharmacological properties Acta Biochimica Polonica, 2009, 56, .	0.5	4
35	Bradykinin Analogues Acylated On Their N-terminus — Some Recent Development. Advances in Experimental Medicine and Biology, 2009, 611, 353-354.	1.6	2
36	Analogues of arginine vasopressin modified in the N-terminal part of the molecule with pipecolic acid isomers. Advances in Experimental Medicine and Biology, 2009, 611, 501-502.	1.6	0

#	Article	IF	CITATIONS
37	Structure of human monocyte chemoattractant protein 4 (MCP-4/CCL13). Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 273-278.	2.5	18
38	Studies of the Biological Properties of Human \hat{l}^2 -Defensin 1. Journal of Biological Chemistry, 2007, 282, 1819-1829.	3.4	63
39	Influence of Conformationally Constrained Amino Acids Replacing Positions 2 and 3 of Arginine Vasopressin (AVP) and Its Analogues on Their Pharmacological Properties. Protein and Peptide Letters, 2007, 14, 213-217.	0.9	3
40	The Effects of N-Terminal Part Modification of Arginine Vasopressin Analogues with 2-Aminoindane-2-carboxylic Acid:Â A Highly Potent V2Agonist. Journal of Medicinal Chemistry, 2007, 50, 2926-2929.	6.4	15
41	Analogs of arginine vasopressin modified in theN-terminal part of the molecule with a conformationally constrainedcis-peptide bond motif. Journal of Peptide Science, 2007, 13, 128-132.	1.4	5
42	Modifications in the bradykinin main chain are not necessary for antagonistic activity in rat blood pressure assay. Journal of Peptide Science, 2007, 13, 206-210.	1.4	3
43	New bradykinin analogues acylated on the N-terminus: effect on rat uterus and blood pressure Acta Biochimica Polonica, 2007, 54, 193-198.	0.5	5
44	New bradykinin analogues acylated on the N-terminus: effect on rat uterus and blood pressure. Acta Biochimica Polonica, 2007, 54, 193-8.	0.5	2
45	Analogues of Neurohypophyseal Hormones, Oxytocin and Arginine Vasopressin, Conformationally Restricted in the N-Terminal Part of the Molecule. Journal of Medicinal Chemistry, 2006, 49, 2016-2021.	6.4	11
46	New bradykinin analogues substituted in positions 7 and 8 with sterically restricted 1-aminocyclopentane-1-carboxylic acid. Journal of Peptide Science, 2006, 12, 775-779.	1.4	13
47	Influence of enantiomers of 1-naphthylalanine in position 2 of VAVP and dVAVP on their pharmacological properties. European Journal of Medicinal Chemistry, 2005, 40, 63-68.	5.5	12
48	Analogues of arginine vasopressin modified in position 2 and 3 with conformationally constrained dipeptide fragments. Journal of Peptide Science, 2005, 11, 91-96.	1.4	3
49	New acylated bradykinin analogues: effect on rat blood pressure and rat uterus. Journal of Peptide Science, 2005, 11, 436-439.	1.4	2
50	The influence of 1-aminocyclopentane-1-carboxylic acid at position 2 or 3 of AVP and its analogues on their pharmacological properties. Journal of Peptide Science, 2005, 11, 584-588.	1.4	12
51	Reconstruction of the Conserved β-Bulge in Mammalian Defensins Using d-Amino Acids. Journal of Biological Chemistry, 2005, 280, 32921-32929.	3.4	73
52	New Bradykinin Analogues Modified in the C-Terminal Part with Sterically Restricted 1-Aminocyclohexane-1-carboxylic Acid. Journal of Medicinal Chemistry, 2005, 48, 8055-8059.	6.4	19
53	Structure of the isoaspartyl peptidase withL-asparaginase activity fromEscherichia coli. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1173-1176.	2.5	22
54	Highly Potent 1-Aminocyclohexane-1-Carboxylic Acid Substituted V2 Agonists of Arginine Vasopressin. Journal of Medicinal Chemistry, 2004, 47, 6020-6024.	6.4	26

#	Article	IF	CITATIONS
55	New bradykinin analogs in contraction of rat uterus, \$\hat{a}^{-}\$1. Peptides, 2000, 21, 829-834.	2.4	18
56	Influence of C-Terminal Modifications of Bradykinin Antagonists on Their Activity. Collection of Czechoslovak Chemical Communications, 1997, 62, 1940-1946.	1.0	7