Gregory W Whitledge

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/127524/publications.pdf
Version: 2024-02-01

$7 \quad$ Stable hydrogen isotopic composition of fishes reflects that of their environment. Canadian Journal
11 Evaluating upstream passage and timing of approach by adult bigheaded carps at a gated dam on the Illinois River. River Research and Applications, 2017, 33, 1268-1278.Evaluation of Otolith Microchemistry for Identifying Natal Origin of Anadromous River Herring in
1007-1020.15 demonstration with a white crappie (Pomoxis annularis) model. Canadian Journal of Fisheries and0.729
Aquatic Sciences, 2004, 61, 2168-2182.

Evaluation of a stable-isotope labelling technique for mass marking fin rays of age-0 lake sturgeon.
Fisheries Management and Ecology, 2011, 18, 168-175.
Longâ€đerm PIT and Tâ€Bar Anchor Tag Retention Rates in Adult Muskellunge. North American Journal of
19 Fisheries Management, 2011, 31, 515-519.
0.5

27

Development and evaluation of species distribution models for fourteen native central U.S. fish
species. Hydrobiologia, 2015, 747, 159-176.
1.0

27
21 MAXIMUM DAILY CONSUMPTION AND RESPIRATION RATES AT FOUR TEMPERATURES FOR FIVE SPECIES OF
CRAYFISH FROM MISSOURI, U.S.A. (DECAPODA, ORCONECTES SPP.). Crustaceana, 2002, 75, 1119-1132. 25

2 Fin Ray Chemistry as a Potential Natural Tag for Smallmouth Bass in Northern Illinois Rivers. Journal of Freshwater Ecology, 2010, 25, 627-635.
0.5

25

23 Identification of stocked muskellunge and potential for distinguishing hatcheryâ€origin and wild fish
$1.0 \quad 24$

24 Otolith microchemistry and isotopic composition as potential indicators of fish movement between
$0.8 \quad 22$
the Illinois River drainage and Lake Michigan. Journal of Great Lakes Research, 2009, 35, 101-106.

25 Fatty acid profiles are biomarkers of fish habitat use in a river-floodplain ecosystem. Hydrobiologia,
$1.0 \quad 22$

26 Otolith $\hat{\text { Í<sup }}>15$ </sup >N Distinguishes Fish from Forested and Agricultural Streams in Southern
Illinois. Journal of Freshwater Ecology, 2008, 23, 333-336.
$0.5 \quad 21$
Recruitment Sources of Channel and Blue Catfishes Inhabiting the Middle Mississippi River. River
Research and Applications, 2016, 32, 1808-1818.
Evaluation of $\hat{\text { ÍD }}$ and \hat{I}^{\prime} <sup >18 </sup $>O$ as natural markers of invertebrate source environment and
dispersal in the middle Mississippi Riverâ€floodplain ecosystem. River Research and Applications, 2012, 28,
$135-142$.
$0.7 \quad 20$
Establishing ecologically relevant management boundaries: linking movement ecology with the
29 conservation of <i>Scaphirhynchus</i> sturgeon. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 877-884.

30 Identifying sources and year classes contributing to invasive grass carp in the Laurentian Great Lakes.
Journal of Great Lakes Research, 2021, 47, 14-28.
0.8

18
Lake sturgeon A cipenser fulvescens and shovelnose sturgeon S caphirhynchus platorynchus
31 environmental life history revealed using pectoral finâ€ray microchemistry: implications for
$0.7 \quad 16$
interjurisdictional conservation through fishery closure zones. Journal of Fish Biology, 2017, 90,
$0.7 \quad 16$
32 Early generation hybrids may drive range expansion of two invasive fishes. Freshwater Biology, 2020,
$1.2 \quad 16$
65, 716-730.

Reproductive biology of middle Mississippi River shovelnose sturgeon: insights from seasonal and age
33 variation in plasma sex steroid and calcium concentrations. Journal of Applied Ichthyology, 2009, 25,
$0.3 \quad 15$
75-82.

Assessment of the Effects of High Summer Water Temperatures on Shovelnose Sturgeon and Potential
37

Stable oxygen isotope analysis confirms natural recruitment of Lake Michigan-origin lake trout
(Salvelinus namaycush) to the adult life stage. Fisheries Research, 2017, 190, 15-23.
Effects of dietary cypermethrin exposure on swimming performance and expression of lipid
38 homeostatic genes in livers of juvenile Chinook salmon, Oncorhynchus tshawytscha. Ecotoxicology,
2021, 30, 257-267.

39	Habitat Characteristics of Black Crappie Nest Sites in an Illinois Impoundment. North American Journal of Fisheries Management, 2009, 29, 189-195.	0.5	10
40	Laboratory Evaluation of Two Bioenergetics Models for Brown Trout. Transactions of the American Fisheries Society, 2010, 139, 929-936.	0.6	9
41	Using pectoral fin rays as a non-lethal aging structure for smallmouth bass: precision with otolith age estimates and the importance of reader experience. Journal of Freshwater Ecology, 2013, 28, 199-210.	0.5	9
42	Recruitment sources and spatial patterns of population demographics of spotted bass in a large riverâ€"tributary network. Fisheries Management and Ecology, 2018, 25, 339-349.	1.0	8
43	Pesticide residues in juvenile Chinook salmon and prey items of the Sacramento River watershed, California â€" A comparison of riverine and floodplain habitats. Environmental Pollution, 2022, 303, 119102.	3.7	8

44 Populationâ€level responses of life history traits to flow regime in three common stream fish species.
Ecohydrology, 2016, 9, 1388-1399.
Dietary Exposure to Bifenthrin and Fipronil Impacts Swimming Performance in Juvenile Chinook
45 Salmon (<i> Oncorhynchus tshawytscha</i>). Environmental Science \& Technology, 2022, 56, 5071-5080.

Fatty Acid Profiles Distinguish Channel Catfish from Three Reaches of the Lower Kaskaskia River and
46 its Floodplain Lakes. River Research and Applications, 2016, 32, 362-372.
0.7

6

Movement of small-bodied fishes from Lake Michigan into Chicago Area Waterways: Insights from
otolith chemistry. Journal of Applied Ichthyology, 2017, 33, 1166-1172.
Ageâ€0 Silver Carp Otolith Microchemistry and Microstructure Reveal Multiple EarlyấŁife Environments
48 and Protracted Spawning in the Upper Mississippi River. North American Journal of Fisheries
$0.5 \quad 6$
Management, 0, , .
Relationships between water and paddlefish <i>Polyodon spathula</i> dentary elemental and
49 stableâ€isotopic signatures: potential application for reconstructing environmental history. Journal of
$\begin{array}{ll}0.7 & 5\end{array}$
Fish Biology, 2017, 90, 595-610.
Sources of Bighead Carp and Silver Carp Found in Chicago Urban Fishing Program Ponds.
0.6

5
Transactions of the American Fisheries Society, 2019, 148, 417-425.

Otolith chemistry of prey fish consumed by a fish predator: does digestion hinder Russian doll
techniques?. Journal of Fish Biology, 2009, 75, 2606-2614.
$\begin{array}{ll}0.7 & 4\end{array}$

Synchronization of fishesâ $€^{\mathrm{TM}}$ temporal feeding patterns with weather in mid-Missouri. Journal of
Freshwater Ecology, 2012, 27, 419-428.

Habitat associations of fish assemblages in the Cache River, Illinois. Environmental Biology of Fishes,
2014, 97, 27-42.
0.4

Drivers and uncertainties of forecasted range shifts for warm-water fishes under climate and land cover change. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 415-425.

Bioavailability of legacy and current-use pesticides in juvenile Chinook salmon habitat of the
57 Sacramento River watershed: Importance of sediment characteristics and extraction techniques.
Using Otolith Chemistry to Determine Early Life Environments and Movement of the Emerging
59 Bigheaded Carp Population in Pools $16 a \hat{\epsilon^{\prime \prime}} 19$ of the Upper Mississippi River. North American Jou
Fisheries Management, 2023, 43, 126-140.

60 Environmental factors associated with silver carp presence and relative abundance near an invasion

