Xian-Xiang Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1274704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Flexible Solid Electrolyte Interphase Layer for Longâ€Life Lithium Metal Anodes. Angewandte Chemie - International Edition, 2018, 57, 1505-1509.	7.2	590
2	Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. Journal of the American Chemical Society, 2016, 138, 15825-15828.	6.6	399
3	Free-Standing Hollow Carbon Fibers as High-Capacity Containers for Stable Lithium Metal Anodes. Joule, 2017, 1, 563-575.	11.7	329
4	Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries. Electrochemical Energy Reviews, 2018, 1, 113-138.	13.1	290
5	Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries. Journal of the American Chemical Society, 2019, 141, 9165-9169.	6.6	272
6	In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Materials, 2018, 10, 85-91.	9.5	227
7	Mitigating Interfacial Potential Drop of Cathode–Solid Electrolyte via Ionic Conductor Layer To Enhance Interface Dynamics for Solid Batteries. Journal of the American Chemical Society, 2018, 140, 6767-6770.	6.6	192
8	Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode. Nano Energy, 2017, 36, 411-417.	8.2	187
9	Using Graphene-Based Plasmonic Nanocomposites to Quench Energy from Quantum Dots for Signal-On Photoelectrochemical Aptasensing. Analytical Chemistry, 2013, 85, 11720-11724.	3.2	108
10	Wet Chemistry Synthesis of Multidimensional Nanocarbon–Sulfur Hybrid Materials with Ultrahigh Sulfur Loading for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 3584-3590.	4.0	108
11	Photoelectrochemical Biosensor Using Enzyme-Catalyzed in Situ Propagation of CdS Quantum Dots on Graphene Oxide. ACS Applied Materials & Interfaces, 2014, 6, 16197-16203.	4.0	96
12	A Flexible Solid Electrolyte with Multilayer Structure for Sodium Metal Batteries. Advanced Energy Materials, 2020, 10, 1903966.	10.2	94
13	Viscoelastic and Nonflammable Interface Design–Enabled Dendriteâ€Free and Safe Solid Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1803854.	10.2	93
14	Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 6585-6589.	7.2	84
15	A Flexible Solid Electrolyte Interphase Layer for Longâ€Life Lithium Metal Anodes. Angewandte Chemie, 2018, 130, 1521-1525.	1.6	82
16	Heteroatom-doped electrodes for all-vanadium redox flow batteries with ultralong lifespan. Journal of Materials Chemistry A, 2018, 6, 41-44.	5.2	79
17	Nitrogen and Oxygen Co-doped Graphitized Carbon Fibers with Sodiophilic-Rich Sites Guide Uniform Sodium Nucleation for Ultrahigh-Capacity Sodium-Metal Anodes. ACS Applied Materials & Interfaces, 2018, 10, 30417-30425.	4.0	78
18	Lithiation-Derived Repellent toward Lithium Anode Safeguard in Quasi-solid Batteries. CheM, 2018, 4, 298-307.	5.8	63

XIAN-XIANG ZENG

#	Article	IF	CITATIONS
19	Improving the stability of LiNi0.80Co0.15Al0.05O2 by AlPO4 nanocoating for lithium-ion batteries. Science China Chemistry, 2017, 60, 1230-1235.	4.2	52
20	A Covalent Organic Framework with Extended ï€-Conjugated Building Units as a Highly Efficient Recipient for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 34990-34998.	4.0	50
21	Quantum dots sensitized titanium dioxide decorated reduced graphene oxide for visible light excited photoelectrochemical biosensing at a low potential. Biosensors and Bioelectronics, 2014, 54, 331-338.	5.3	49
22	Hierarchical Carbon Micro/Nanonetwork with Superior Electrocatalysis for Highâ€Rate and Endurable Vanadium Redox Flow Batteries. Advanced Science, 2018, 5, 1801281.	5.6	48
23	Constructing a Stable Lithium Metal–Gel Electrolyte Interface for Quasi-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2018, 10, 30065-30070.	4.0	45
24	Designing High-Performance Composite Electrodes for Vanadium Redox Flow Batteries: Experimental and Computational Investigation. ACS Applied Materials & amp; Interfaces, 2018, 10, 22381-22388.	4.0	42
25	Carbon sheet-decorated graphite felt electrode with high catalytic activity for vanadium redox flow batteries. Carbon, 2019, 148, 9-15.	5.4	40
26	A Fully Aqueous Hybrid Electrolyte Rechargeable Battery with High Voltage and High Energy Density. Advanced Energy Materials, 2020, 10, 2001583.	10.2	40
27	High electro-catalytic graphite felt/MnO2 composite electrodes for vanadium redox flow batteries. Science China Chemistry, 2018, 61, 732-738.	4.2	37
28	Electrode materials for aqueous multivalent metal-ion batteries: Current status and future prospect. Journal of Energy Chemistry, 2022, 67, 563-584.	7.1	36
29	An Aqueous Hybrid Zincâ€Bromine Battery with High Voltage and Energy Density. ChemElectroChem, 2020, 7, 1531-1536.	1.7	33
30	Constructing Heterostructured Bimetallic Selenides on an N-Doped Carbon Nanoframework as Anodes for Ultrastable Na-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 1222-1232.	4.0	33
31	Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage. Materials Today Nano, 2019, 8, 100057.	2.3	31
32	Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 6647-6651.	1.6	26
33	A Stable Biomassâ€Đerived Hard Carbon Anode for Highâ€Performance Sodiumâ€ion Full Battery. Energy Technology, 2021, 9, 2000730.	1.8	26
34	Gradiently Polymerized Solid Electrolyte Meets with Micro-/Nanostructured Cathode Array. ACS Applied Materials & Interfaces, 2018, 10, 18005-18011.	4.0	23
35	Preparation of a porous graphite felt electrode for advance vanadium redox flow batteries. RSC Advances, 2020, 10, 13374-13378.	1.7	20
36	Robust Electrodes with Maximized Spatial Catalysis for Vanadium Redox Flow Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38922-38927.	4.0	19

XIAN-XIANG ZENG

#	Article	IF	CITATIONS
37	Highly Thermal Conductive Separator with Inâ€Built Phosphorus Stabilizer for Superior Niâ€Rich Cathode Based Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2003285.	10.2	19
38	Theoretical calculation guided materials design and capture mechanism for Zn–Se batteries via heteroatomâ€doped carbon. , 2022, 1, 59-67.		19
39	Unveiling the Role of Heteroatom Gradient-Distributed Carbon Fibers for Vanadium Redox Flow Batteries with Long Service Life. ACS Applied Materials & Interfaces, 2019, 11, 11451-11458.	4.0	18
40	Revealing the Superiority of Fast Ion Conductor in Composite Electrolyte for Dendrite-Free Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 22978-22986.	4.0	18
41	Porous lamellar carbon assembled from Bacillus mycoides as high-performance electrode materials for vanadium redox flow batteries. Journal of Power Sources, 2020, 450, 227633.	4.0	13
42	A dynamic polyanion framework with anion/cation co-doping for robust Na/Zn-ion batteries. Journal of Power Sources, 2022, 530, 231257.	4.0	13
43	Raising the capacity of lithium vanadium phosphate via anion and cation co-substitution. Science China Chemistry, 2020, 63, 203-207.	4.2	12
44	High performance isomeric Fe2O3 nanospheres anode materials derived from industrial wastewater for lithium ion batteries. Electrochimica Acta, 2019, 297, 1028-1034.	2.6	11
45	Surfaceâ€Wrinkleâ€Modified Graphite Felt with High Effectiveness for Vanadium Redox Flow Batteries. Advanced Electronic Materials, 2019, 5, 1900036.	2.6	10
46	A dual conducting network corbelled hydrated vanadium pentoxide cathode for high-rate aqueous zinc-ion batteries. Nanoscale, 2022, 14, 1008-1013.	2.8	10
47	Borosilicate Glass-Enabled Antifracture NASICON Solid Electrolytes for Lithium-Metal Batteries. ACS Applied Energy Materials, 2022, 5, 3734-3740.	2.5	8
48	Exploiting the synergistic effect of multiphase MnO ₂ stabilized by an integrated conducting network for aqueous zinc-ion batteries. Materials Chemistry Frontiers, 2022, 6, 1956-1963.	3.2	7
49	Macaroni‣ike Blueâ€Gray Nb ₂ O ₅ Nanotubes for Highâ€Reversible Lithiumâ€ŀon Storage. Advanced Energy and Sustainability Research, 2021, 2, 2100028.	2.8	6
50	Mixed lithium fluoride-nitride ionic conducting interphase for dendrite-free lithium metal anode. Applied Surface Science, 2021, 541, 148294.	3.1	4
51	Innentitelbild: A Flexible Solid Electrolyte Interphase Layer for Longâ€Life Lithium Metal Anodes (Angew.) Tj ETQq.	1 1 0.7843 1.6	14 rgBT /○
52	A three-dimensional conducting network of rGO-in-graphite-felt as electrode for vanadium redox	1.2	2

A three-dimensional conducting network of rGO-in-graphite-felt as electrode for vanadium redox flow batteries. Electrochemical Energy Technology, 2018, 4, 60-65. 52