
Raymond Y Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1274491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activity of PD-1 blockade with nivolumab among patients with recurrent atypical/anaplastic meningioma: phase II trial results. Neuro-Oncology, 2022, 24, 101-113.	1.2	38
2	Deep learning-based automatic tumor burden assessment of pediatric high-grade gliomas, medulloblastomas, and other leptomeningeal seeding tumors. Neuro-Oncology, 2022, 24, 289-299.	1.2	28
3	Artificial intelligence for prediction of COVID-19 progression using CT imaging and clinical data. European Radiology, 2022, 32, 205-212.	4.5	42
4	Standardized Classification of Lumbar Spine Degeneration on Magnetic Resonance Imaging Reduces Intra- and Inter-subspecialty Variability. Current Problems in Diagnostic Radiology, 2022, 51, 491-496.	1.4	4
5	Imaging Advances for Central Nervous System Tumors. Hematology/Oncology Clinics of North America, 2022, 36, 43-61.	2.2	4
6	Body CT and PET/CT detection of extracranial lymphoma in patients with newly diagnosed central nervous system lymphoma. Neuro-Oncology, 2022, 24, 482-491.	1.2	3
7	Deep learning approaches to non-invasively assess molecular features of gliomas. Neuro-Oncology, 2022, 24, 653-654.	1.2	2
8	An automated COVID-19 triage pipeline using artificial intelligence based on chest radiographs and clinical data. Npj Digital Medicine, 2022, 5, 5.	10.9	22
9	Is this good enough? On expert perception of brain tumor segmentation quality. , 2022, , .		0
10	Circulating Immune Cell and Outcome Analysis from the Phase II Study of PD-L1 Blockade with Durvalumab for Newly Diagnosed and Recurrent Glioblastoma. Clinical Cancer Research, 2022, 28, 2567-2578.	7.0	20
11	Imaging diagnosis and treatment selection for brain tumors in the era of molecular therapeutics. Cancer Imaging, 2022, 22, 19.	2.8	9
12	Brain metastases: A Society for Neuro-Oncology (SNO) consensus review on current management and future directions. Neuro-Oncology, 2022, 24, 1613-1646.	1.2	39
13	Radiomics-Based Machine Learning for Outcome Prediction in a Multicenter Phase II Study of Programmed Death-Ligand 1 Inhibition Immunotherapy for Glioblastoma. American Journal of Neuroradiology, 2022, 43, 675-681.	2.4	12
14	Evaluation of a convolutional neural network for ovarian tumor differentiation based on magnetic resonance imaging. European Radiology, 2021, 31, 4960-4971.	4.5	35
15	Immune checkpoint inhibitor therapy may increase the incidence of treatment-related necrosis after stereotactic radiosurgery for brain metastases: a systematic review and meta-analysis. European Radiology, 2021, 31, 4114-4129.	4.5	22
16	Diagnostic Yield of Body CT and Whole-Body FDG PET/CT for Initial Systemic Staging in Patients With Suspected Primary CNS Lymphoma: A Systematic Review and Meta-Analysis. American Journal of Roentgenology, 2021, 216, 1172-1182.	2.2	9
17	Analysis of morphological characteristics of IDH-mutant/wildtype brain tumors using whole-lesion phenotype analysis. Neuro-Oncology Advances, 2021, 3, vdab088.	0.7	2
18	The T2-FLAIR mismatch sign as a predictor of IDH-mutant, 1p/19q-noncodeleted lower-grade gliomas: a systematic review and diagnostic meta-analysis. European Radiology, 2021, 31, 5289-5299.	4.5	26

#	Article	IF	CITATIONS
19	Immune Checkpoint Inhibitor with or without Radiotherapy in Melanoma Patients with Brain Metastases: A Systematic Review and Meta-Analysis. Korean Journal of Radiology, 2021, 22, 584.	3.4	12
20	The Incidence of Epstein-Barr Virus-Positive Diffuse Large B-Cell Lymphoma: A Systematic Review and Meta-Analysis. Cancers, 2021, 13, 1785.	3.7	16
21	Loss of H3K27me3 in meningiomas. Neuro-Oncology, 2021, 23, 1282-1291.	1.2	45
22	Encephalopathy at admission predicts adverse outcomes in patients with SARSâ€CoVâ€2 infection. CNS Neuroscience and Therapeutics, 2021, 27, 1127-1135.	3.9	3
23	The Incidence and Treatment Response of Double Expression of MYC and BCL2 in Patients with Diffuse Large B-Cell Lymphoma: A Systematic Review and Meta-Analysis. Cancers, 2021, 13, 3369.	3.7	8
24	Development of Brain Metastases in Patients With Non–Small Cell Lung Cancer and No Brain Metastases at Initial Staging Evaluation: Cumulative Incidence and Risk Factor Analysis. American Journal of Roentgenology, 2021, 217, 1184-1193.	2.2	13
25	In search of predictive and response markers in antiangiogenic therapy of glioblastoma. Neuro-Oncology, 2021, 23, 184-185.	1.2	0
26	BOLD Asynchrony: An imaging biomarker of tumor burden in IDH-mutated gliomas. Neuro-Oncology, 2021, , .	1.2	0
27	Identification and Characterization of Leptomeningeal Metastases Using SPINE, A Webâ€Based Collaborative Platform. Journal of Neuroimaging, 2021, 31, 324-333.	2.0	3
28	Biopsy Artifact in Laser Interstitial Thermal Therapy: A Technical Note. Frontiers in Oncology, 2021, 11, 746416.	2.8	3
29	NIMG-24. RANO CRITERIA DETECTS EARLY PROGRESSION SOONER THAN MODIFIED RANO CRITERIA IN PATIENTS WITH NEWLY DIAGNOSED GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi133-vi133.	1.2	0
30	Intra- and Intersubspecialty Variability in Lumbar Spine MRI Interpretation: A Multireader Study Comparing Musculoskeletal Radiologists and Neuroradiologists. Current Problems in Diagnostic Radiology, 2020, 49, 182-187.	1.4	11
31	Frequency and Evolution of New Postoperative Enhancement on 3 Tesla Intraoperative and Early Postoperative Magnetic Resonance Imaging. Neurosurgery, 2020, 87, 238-246.	1.1	5
32	Whole-Brain MR Spectroscopy Imaging of Brain Tumor Metabolites. Radiology, 2020, 294, 598-599.	7.3	5
33	Non-invasive diagnosis of H3 K27M mutant midline glioma. Neuro-Oncology, 2020, 22, 309-310.	1.2	3
34	Imaging of Central Nervous System Tumors Based on the 2016 World Health Organization Classification. Neurologic Clinics, 2020, 38, 95-113.	1.8	21
35	Target-specific yield rate and clinical utility of percutaneous tissue sampling in spinal infection. Clinical Imaging, 2020, 68, 257-262.	1.5	4
36	Automatic Machine Learning to Differentiate Pediatric Posterior Fossa Tumors on Routine MR Imaging. American Journal of Neuroradiology, 2020, 41, 1279-1285.	2.4	37

#	Article	IF	CITATIONS
37	Differentiation of low and high grade renal cell carcinoma on routine MRI with an externally validated automatic machine learning algorithm. Scientific Reports, 2020, 10, 19503.	3.3	12
38	Response to Letter to Editor. Neuro-Oncology, 2020, 22, 1706-1707.	1.2	1
39	Diagnostic Yield of Staging Brain MRI in Patients with Newly Diagnosed Non–Small Cell Lung Cancer. Radiology, 2020, 297, 419-427.	7.3	21
40	Ivosidenib in Isocitrate Dehydrogenase 1 <i>–</i> Mutated Advanced Glioma. Journal of Clinical Oncology, 2020, 38, 3398-3406.	1.6	167
41	Deep Learning Based on <scp>MRI</scp> for Differentiation of Low―and Highâ€Grade in Lowâ€5tage Renal Cell Carcinoma. Journal of Magnetic Resonance Imaging, 2020, 52, 1542-1549.	3.4	31
42	Evaluation of RAPNO criteria in medulloblastoma and other leptomeningeal seeding tumors using MRI and clinical data. Neuro-Oncology, 2020, 22, 1536-1544.	1.2	10
43	Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases. Neuro-Oncology, 2020, 22, 757-772.	1.2	131
44	Deep Learning to Distinguish Benign from Malignant Renal Lesions Based on Routine MR Imaging. Clinical Cancer Research, 2020, 26, 1944-1952.	7.0	86
45	CerebroVis: Designing an Abstract yet Spatially Contextualized Cerebral Artery Network Visualization. IEEE Transactions on Visualization and Computer Graphics, 2020, 26, 938-948.	4.4	8
46	Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro-Oncology, 2020, 22, 1073-1113.	1.2	543
47	Volumetric analysis of IDH-mutant lower-grade glioma: a natural history study of tumor growth rates before and after treatment. Neuro-Oncology, 2020, 22, 1822-1830.	1.2	23
48	Artificial Intelligence Augmentation of Radiologist Performance in Distinguishing COVID-19 from Pneumonia of Other Origin at Chest CT. Radiology, 2020, 296, E156-E165.	7.3	315
49	Mechanisms and therapeutic implications of hypermutation in gliomas. Nature, 2020, 580, 517-523.	27.8	374
50	BIOM-44. GENOMIC PREDICTORS OF ADVERSE EVENTS IN NEWLY DIAGNOSED IDH-WILDTYPE GLIOBLASTOMA. Neuro-Oncology, 2020, 22, ii11-ii11.	1.2	1
51	Standardization of imaging methods for machine learning in neuro-oncology. Neuro-Oncology Advances, 2020, 2, iv49-iv55.	0.7	8
52	Indications and Limitations of Conventional Imaging– Current Clinical Practice in theÂContext of Standard Therapy. , 2020, , 1-15.		1
53	BIOM-34. CLINICAL, RADIOGRAPHIC, AND PATHOLOGIC PREDICTORS OF RESPONSE TO ANTI-PD-1 AND ANTI-PD-L1 THERAPY IN IDH-WILDTYPE CLIOBLASTOMA PATIENTS. Neuro-Oncology, 2020, 22, ii8-ii9.	1.2	Ο
54	Response assessment of meningioma: 1D, 2D, and volumetric criteria for treatment response and tumor progression. Neuro-Oncology, 2019, 21, 234-241.	1.2	16

#	Article	IF	CITATIONS
55	Proposed response assessment and endpoints for meningioma clinical trials: report from the Response Assessment in Neuro-Oncology Working Group. Neuro-Oncology, 2019, 21, 26-36.	1.2	114
56	Using 3D MRI Anatomic Maps to Determine Prognosis for Glioblastomas. Radiology, 2019, 293, 644-645.	7.3	0
57	Survival Benefit of Adjuvant Radiotherapy in Elderly Patients with WHO Grade III Meningioma. World Neurosurgery, 2019, 131, e303-e311.	1.3	10
58	The effect of brain metastasis location on clinical outcomes: A review of the literature. Neuro-Oncology Advances, 2019, 1, vdz017.	0.7	11
59	Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low- and high-grade gliomas. Journal of Neuro-Oncology, 2019, 142, 299-307.	2.9	98
60	Adjuvant radiotherapy and chemotherapy in early-stage diffuse large B cell lymphoma of head and neck with extranodal involvement. Hematology, 2019, 24, 268-275.	1.5	4
61	Advances in multidisciplinary therapy for meningiomas. Neuro-Oncology, 2019, 21, i18-i31.	1.2	102
62	DNA methylation profiling to predict recurrence risk in meningioma: development and validation of a nomogram to optimize clinical management. Neuro-Oncology, 2019, 21, 901-910.	1.2	184
63	Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro-Oncology, 2019, 21, 1412-1422.	1.2	128
64	A low percentage of metastases in deep brain and temporal lobe structures. Neuro-Oncology, 2019, 21, 640-647.	1.2	8
65	Artificial intelligence in cancer imaging: Clinical challenges and applications. Ca-A Cancer Journal for Clinicians, 2019, 69, 127-157.	329.8	965
66	DRES-08. CLINICAL SIGNIFICANCE OF HYPERMUTATION IN GLIOMAS. Neuro-Oncology, 2019, 21, vi73-vi73.	1.2	0
67	NIMG-43. LONGITUDINAL TRACKING AND GROWTH RATE CHARACTERIZATION OF BRAIN METASTASES ON MAGNETIC RESONANCE IMAGING. Neuro-Oncology, 2019, 21, vi170-vi171.	1.2	0
68	Teaching Neurolmages: Corkscrew medullary veins in active neurosarcoidosis. Neurology, 2019, 93, e1832-e1833.	1.1	0
69	MR Imaging of the Extracranial Facial Nerve with the CISS Sequence. American Journal of Neuroradiology, 2019, 40, 1954-1959.	2.4	12
70	CT-Guided Percutaneous Spine Biopsy Specimen Adequacy, Pathology Concordance, and Negative Predictive Value with Battery-Powered Drill and Manual Approaches. Current Problems in Diagnostic Radiology, 2019, 48, 558-562.	1.4	3
71	Comparison of Radiation Therapy Alone and Chemotherapy Alone for Low-Grade Gliomas without Surgical Resection. World Neurosurgery, 2019, 122, e108-e120.	1.3	5
72	Life after surgical resection of a meningioma: a prospective cross-sectional study evaluating health-related quality of life. Neuro-Oncology, 2019, 21, i32-i43.	1.2	56

#	Article	IF	CITATIONS
73	Functional MRI Task Comparison for Language Mapping in Neurosurgical Patients. Journal of Neuroimaging, 2019, 29, 348-356.	2.0	28
74	Imaging and diagnostic advances for intracranial meningiomas. Neuro-Oncology, 2019, 21, i44-i61.	1.2	100
75	Molecular and translational advances in meningiomas. Neuro-Oncology, 2019, 21, i4-i17.	1.2	92
76	Improved Optic Nerve Visualization and Surgical Planning through a Novel MRI Protocol. Journal of Neurological Surgery, Part B: Skull Base, 2019, 80, .	0.8	0
77	Imaging in neuro-oncology. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628641875986.	3.5	41
78	Validation of postoperative residual contrast-enhancing tumor volume as an independent prognostic factor for overall survival in newly diagnosed glioblastoma. Neuro-Oncology, 2018, 20, 1240-1250.	1.2	64
79	Comparison of Adjuvant Radiation Therapy Alone and Chemotherapy Alone in Surgically Resected Low-Grade Cliomas: Survival Analyses of 2253 Cases from the National Cancer Data Base. World Neurosurgery, 2018, 112, e812-e822.	1.3	21
80	Diagnostic accuracy of 2-hydroxyglutarate magnetic resonance spectroscopy in newly diagnosed brain mass and suspected recurrent gliomas. Neuro-Oncology, 2018, 20, 1262-1271.	1.2	31
81	The FDA NIH Biomarkers, EndpointS, and other Tools (BEST) resource in neuro-oncology. Neuro-Oncology, 2018, 20, 1162-1172.	1.2	92
82	Imaging Neurologic Manifestations of Oncologic Disease. , 2018, , 13-31.		0
83	Residual Convolutional Neural Network for the Determination of <i>IDH</i> Status in Low- and High-Grade Gliomas from MR Imaging. Clinical Cancer Research, 2018, 24, 1073-1081.	7.0	297
84	PATH-08. THE IVY GLIOBLASTOMA PATIENT ATLAS - A NOVEL CLINICAL AND RADIO-GENOMICS RESOURCE FOR EARLY PHASE CLINICAL TRIAL DESIGN AND INTERPRETATION. Neuro-Oncology, 2018, 20, vi159-vi159.	1.2	0
85	Shape Features of the Lesion Habitat to Differentiate Brain Tumor Progression from Pseudoprogression on Routine Multiparametric MRI: A Multisite Study. American Journal of Neuroradiology, 2018, 39, 2187-2193.	2.4	61
86	NIMG-54. SPATIAL DISTRIBUTION ATLASES OF POST-TREATMENT MRI SCANS REVEAL DISTINCT HEMISPHERIC DISTRIBUTION OF GLIOBLASTOMA RECURRENCE FROM PSEUDO-PROGRESSION. Neuro-Oncology, 2018, 20, vi188-vi188.	1.2	0
87	Voxel-Wise Analysis of Fluoroethyltyrosine PET and MRI in the Assessment of Recurrent Glioblastoma During Antiangiogenic Therapy. American Journal of Roentgenology, 2018, 211, 1342-1347.	2.2	10
88	PD-1 inhibition has only limited clinical benefit in patients with recurrent high-grade glioma. Neurology, 2018, 91, e1355-e1359.	1.1	64
89	CT and MRI Protocol Variation andÂOptimization at an Academic MedicalÂCenter. Journal of the American College of Radiology, 2018, 15, 1254-1258.	1.8	12
90	Assessment of care pattern and outcome in hemangioblastoma. Scientific Reports, 2018, 8, 11144.	3.3	13

#	Article	IF	CITATIONS
91	Prognostic Factors in Clival Chordomas: An Integrated Analysis of 347 Patients. World Neurosurgery, 2018, 118, e375-e387.	1.3	18
92	Radiologic predictors of immune checkpoint inhibitor response in advanced head and neck squamous cell carcinoma. Oral Oncology, 2018, 85, 29-34.	1.5	15
93	Reduced expression of DNA repair genes and chemosensitivity in 1p19q codeleted lower-grade gliomas. Journal of Neuro-Oncology, 2018, 139, 563-571.	2.9	17
94	Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro-Oncology, 2017, 19, 109-117.	1.2	211
95	Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro-Oncology, 2017, 19, 1688-1697.	1.2	84
96	An Update on the Approach to the Imaging of Brain Tumors. Current Neurology and Neuroscience Reports, 2017, 17, 53.	4.2	11
97	Response assessment in high-grade glioma: tumor volume as endpoint. Neuro-Oncology, 2017, 19, 744-745.	1.2	6
98	Diffusion MRI Phenotypes Predict Overall Survival Benefit from Anti-VEGF Monotherapy in Recurrent Glioblastoma: Converging Evidence from Phase II Trials. Clinical Cancer Research, 2017, 23, 5745-5756.	7.0	53
99	MNGI-10. SURVIVAL BENEFIT ASSOCIATED WITH ADJUVANT RADIOTHERAPY IN ELDERLY PATIENTS WITH WHO GRADE III MENINGIOMA. Neuro-Oncology, 2017, 19, vi134-vi134.	1.2	0
100	Radiographic Prediction of Meningioma Grade and Genomic Profile. Journal of Neurological Surgery, Part B: Skull Base, 2017, 78, S1-S156.	0.8	1
101	Radiographic prediction of meningioma grade by semantic and radiomic features. PLoS ONE, 2017, 12, e0187908.	2.5	109
102	Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab. Neuro-Oncology, 2016, 18, 1680-1687.	1.2	94
103	Case Report: Next generation sequencing identifies a NAB2-STAT6 fusion in Glioblastoma. Diagnostic Pathology, 2016, 11, 13.	2.0	10
104	Response Assessment in Neuro-Oncology Criteria and Clinical Endpoints. Magnetic Resonance Imaging Clinics of North America, 2016, 24, 705-718.	1.1	25
105	The Impact of T2/FLAIR Evaluation per RANO Criteria on Response Assessment of Recurrent Glioblastoma Patients Treated with Bevacizumab. Clinical Cancer Research, 2016, 22, 575-581.	7.0	62
106	Pitfalls in the Neuroimaging of Glioblastoma in the Era of Antiangiogenic and Immuno/Targeted Therapy ââ,¬â€œ Detecting Illusive Disease, Defining Response. Frontiers in Neurology, 2015, 6, 33.	2.4	139
107	How Treatment Monitoring Is Influencing Treatment Decisions in Glioblastomas. Current Treatment Options in Neurology, 2015, 17, 343.	1.8	13
108	The Benefits of High Relaxivity for Brain Tumor Imaging: Results of a Multicenter Intraindividual Crossover Comparison of Gadobenate Dimeglumine with Gadoterate Meglumine (The BENEFIT Study). American Journal of Neuroradiology, 2015, 36, 1589-1598.	2.4	21

#	Article	IF	CITATIONS
109	Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncology, The, 2015, 16, e534-e542.	10.7	582
110	Early Postoperative Imaging and Image-Guided Procedures on Patients with Face Transplants. American Journal of Neuroradiology, 2015, 36, 568-574.	2.4	6
111	Retrospective study of carmustine or lomustine with bevacizumab in recurrent glioblastoma patients who have failed prior bevacizumab. Neuro-Oncology, 2014, 16, 1523-1529.	1.2	22
112	Histogram analysis of apparent diffusion coefficient within enhancing and nonenhancing tumor volumes in recurrent glioblastoma patients treated with bevacizumab. Journal of Neuro-Oncology, 2014, 119, 149-158.	2.9	41
113	Defining language networks from restingâ€state fMRI for surgical planning—a feasibility study. Human Brain Mapping, 2014, 35, 1018-1030.	3.6	176
114	Effect of region-of-interest placement in bolus tracking cerebral computed tomography angiography. Neuroradiology, 2013, 55, 1183-1188.	2.2	3
115	Recurrent high-grade glioma treated with bevacizumab: prognostic value of MGMTÂmethylation, EGFR status and pretreatment MRI in determining response and survival. Journal of Neuro-Oncology, 2013, 115, 267-276.	2.9	30
116	Effect of disease and recovery on functional anatomy in brain tumor patients: insights from functional MRI and diffusion tensor imaging. Imaging in Medicine, 2013, 5, 333-346.	0.0	14
117	Recurrent glioblastoma: Volumetric assessment and stratification of patient survival with early posttreatment magnetic resonance imaging in patients treated with bevacizumab. Cancer, 2013, 119, 3479-3488.	4.1	26
118	Recurrent glioblastoma: Stratification of patient survival using tumor volume before and after antiangiogenic treatment Journal of Clinical Oncology, 2013, 31, 2075-2075.	1.6	2
119	Semi-Automatic Segmentation Software for Quantitative Clinical Brain Glioblastoma Evaluation. Academic Radiology, 2012, 19, 977-985.	2.5	33
120	Diagnosis and treatment of a perforated duodenal diverticulum. Emergency Radiology, 2007, 13, 285-287.	1.8	13
121	Metalloproteomics: High-Throughput Structural and Functional Annotation of Proteins in Structural Genomics. Structure, 2005, 13, 1473-1486.	3.3	76
122	C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nature Genetics, 2003, 34, 35-41.	21.4	347
123	High-throughput expression, purification, and characterization of recombinant Caenorhabditis elegans proteins. Biochemical and Biophysical Research Communications, 2003, 307, 928-934.	2.1	23
124	In situ chemistry of osteoporosis revealed by synchrotron infrared microspectroscopy. Bone, 2003, 33, 514-521.	2.9	72
125	Characterization of bone mineral composition in the proximal tibia of Cynomolgus monkeys: effect of ovariectomy and nandrolone decanoate treatment. Bone, 2002, 30, 492-497.	2.9	66
126	Center for Synchrotron Biosciences' U2B beamline: an international resource for biological infrared spectroscopy. Journal of Synchrotron Radiation, 2002, 9, 189-197.	2.4	86

#	Article	IF	CITATIONS
127	Structural genomics: A pipeline for providing structures for the biologist. Protein Science, 2002, 11, 723-738.	7.6	168
128	Performance of Automatic Machine Learning versus Radiologists in the Evaluation of Endometrium on Computed Tomography. SSRN Electronic Journal, 0, , .	0.4	0
129	Differentiation of Low and High Grade Renal Cell Carcinoma on Routine MR with an Externally Validated Automatic Machine Learning Algorithm. SSRN Electronic Journal, 0, , .	0.4	ο