Hongsheng Ouyang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1274248/publications.pdf

Version: 2024-02-01

83 papers

1,653 citations

304743 22 h-index 35 g-index

89 all docs 89 docs citations

89 times ranked 2016 citing authors

#	Article	IF	CITATIONS
1	Efficient Generation of Myostatin Mutations in Pigs Using the CRISPR/Cas9 System. Scientific Reports, 2015, 5, 16623.	3.3	126
2	Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Scientific Reports, 2015, 5, 14253.	3.3	105
3	Piglets cloned from induced pluripotent stem cells. Cell Research, 2013, 23, 162-166.	12.0	84
4	Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Research, 2014, 24, 501-504.	12.0	77
5	CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs. Transgenic Research, 2017, 26, 799-805.	2.4	73
6	Barriers for Deriving Transgene-Free Pig iPS Cells with Episomal Vectors. Stem Cells, 2015, 33, 3228-3238.	3.2	60
7	Genetically modified pigs are protected from classical swine fever virus. PLoS Pathogens, 2018, 14, e1007193.	4.7	60
8	Interactions of porcine circovirus 2 with its hosts. Virus Genes, 2016, 52, 437-444.	1.6	50
9	Generation and characterization of stable pig pregastrulation epiblast stem cell lines. Cell Research, 2022, 32, 383-400.	12.0	48
10	Long Non-coding RNAs Contribute to the Inhibition of Proliferation and EMT by Pterostilbene in Human Breast Cancer. Frontiers in Oncology, 2018, 8, 629.	2.8	47
11	Development of a Rapid Method for the Visible Detection of Pork DNA in Halal Products by Loop-Mediated Isothermal Amplification. Food Analytical Methods, 2016, 9, 565-570.	2.6	38
12	Efficient Generation of Orthologous Point Mutations in Pigs via CRISPR-assisted ssODN-mediated Homology-directed Repair. Molecular Therapy - Nucleic Acids, 2016, 5, e396.	5.1	36
13	Optimization of a CRISPR/Cas9-mediated Knock-in Strategy at the Porcine Rosa26 Locus in Porcine Foetal Fibroblasts. Scientific Reports, 2017, 7, 3036.	3.3	36
14	Transgenic shRNA pigs reduce susceptibility to foot and mouth disease virus infection. ELife, 2015, 4, e06951.	6.0	35
15	Induction of Germ Cell-like Cells from Porcine Induced Pluripotent Stem Cells. Scientific Reports, 2016, 6, 27256.	3.3	32
16	Preparation of a new type 2 diabetic miniature pig model via the CRISPR/Cas9 system. Cell Death and Disease, 2019, 10, 823.	6.3	29
17	Generation of pRSAD2 gene knock-in pig via CRISPR/Cas9 technology. Antiviral Research, 2020, 174, 104696.	4.1	29
18	Site-Specific Fat-1 Knock-In Enables Significant Decrease of n-6PUFAs/n-3PUFAs Ratio in Pigs. G3: Genes, Genomes, Genetics, 2018, 8, 1747-1754.	1.8	28

#	Article	IF	CITATIONS
19	Pseudorabies virus can escape from CRISPR-Cas9-mediated inhibition. Virus Research, 2016, 223, 197-205.	2.2	27
20	Recent trends in click chemistry as a promising technology for virus-related research. Virus Research, 2018, 256, 21-28.	2.2	26
21	Efficient base editing by RNA-guided cytidine base editors (CBEs) in pigs. Cellular and Molecular Life Sciences, 2020, 77, 719-733.	5.4	26
22	Comparative analysis of different methods to enhance porcine circovirus 2 replication. Journal of Virological Methods, 2013, 187, 368-371.	2.1	24
23	Porcine circovirus 4 rescued from an infectious clone is replicable and pathogenic in vivo. Transboundary and Emerging Diseases, 2022, 69, .	3.0	24
24	In vitro inhibition of CSFV replication by multiple siRNA expression. Antiviral Research, 2011, 91, 209-216.	4.1	22
25	Human cells are permissive for the productive infection of porcine circovirus type 2 in vitro. Scientific Reports, 2019, 9, 5638.	3.3	20
26	Corrigendum. G3: Genes, Genomes, Genetics, 2018, 8, 2833-2840.	1.8	19
27	Apolipoprotein CIII regulates lipoprotein-associated phospholipase A2 expression via the MAPK and NFκB pathways. Biology Open, 2015, 4, 661-665.	1.2	18
28	Nitro-oleic acid downregulates lipoprotein-associated phospholipase A2 expression via the p42/p44 MAPK and NFκB pathways. Scientific Reports, 2014, 4, 4905.	3.3	18
29	Truncated C-terminus of fibrillin-1 induces Marfanoid-progeroid-lipodystrophy (MPL) syndrome in rabbit. DMM Disease Models and Mechanisms, $2018,11,.$	2.4	18
30	Resveratrol suppresses lipoproteinâ€essociated phospholipase A ₂ expression by reducing oxidative stress in macrophages and animal models. Molecular Nutrition and Food Research, 2017, 61, 1601112.	3.3	17
31	Expression, purification and antibody preparation using different constructs of PCV2 capsid protein. International Journal of Biological Macromolecules, 2014, 67, 289-294.	7.5	16
32	HMG-CoA reductase is negatively associated with PCV2 infection and PCV2-induced apoptotic cell death. Journal of General Virology, 2014, 95, 1330-1337.	2.9	16
33	LMNA-mutated Rabbits: A Model of Premature Aging Syndrome with Muscular Dystrophy and Dilated Cardiomyopathy. , 2019, 10, 102.		15
34	N-3 polyunsaturated fatty acids attenuates triglyceride and inflammatory factors level in hfat-1 transgenic pigs. Lipids in Health and Disease, 2016, 15, 89.	3.0	14
35	Hepatic autophagy and mitophagy status in dairy cows with subclinical and clinical ketosis. Journal of Dairy Science, 2021, 104, 4847-4857.	3.4	14
36	Porcine circovirus 2 proliferation can be enhanced by stably expressing porcine IL-2 gene in PK-15 cell. Virus Research, 2017, 227, 143-149.	2.2	12

3

#	Article	IF	CITATIONS
37	Data Mining and Validation of AMPK Pathway as a Novel Candidate Role Affecting Intramuscular Fat Content in Pigs. Animals, 2019, 9, 137.	2.3	12
38	A CRISPR-engineered swine model of COL2A1 deficiency recapitulates altered early skeletal developmental defects in humans. Bone, 2020, 137, 115450.	2.9	12
39	Overexpression of porcine lipoprotein-associated phospholipase A 2 in swine. Biochemical and Biophysical Research Communications, 2015, 465, 507-511.	2.1	11
40	Expression, purification and antibody preparation of PCV2 Rep and ORF3 proteins. International Journal of Biological Macromolecules, 2016, 86, 277-281.	7.5	11
41	Biomimetic Octopus-like Particles for Ultraspecific Capture and Detection of Pathogens. ACS Applied Materials & Detection of P	8.0	11
42	Construction of a recombinant human FGF1 expression vector for mammary gland-specific expression in human breast cancer cells. Molecular and Cellular Biochemistry, 2011, 354, 39-46.	3.1	10
43	Isoform-specific imprinting of the MEST gene in porcine parthenogenetic fetuses. Gene, 2015, 558, 287-290.	2.2	10
44	CRISPR/Cas9-Mediated Hitchhike Expression of Functional shRNAs at the Porcine miR-17-92 Cluster. Cells, 2019, 8, 113.	4.1	10
45	Development of Whole-Porcine Monoclonal Antibodies with Potent Neutralization Activity against Classical Swine Fever Virus from Single B Cells. ACS Synthetic Biology, 2019, 8, 989-1000.	3.8	10
46	Possible Targets of Pan-Coronavirus Antiviral Strategies for Emerging or Re-Emerging Coronaviruses. Microorganisms, 2021, 9, 1479.	3.6	10
47	Swine sperm induces neutrophil extracellular traps that entangle sperm and embryos. Reproduction, 2020, 160, 217-225.	2.6	10
48	Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos. International Journal of Molecular Sciences, 2014, 15, 21631-21643.	4.1	9
49	Genotyping based on complete coding sequences of porcine circovirus type 3 is stable and reliable. Infection, Genetics and Evolution, 2020, 78, 104116.	2.3	9
50	Viruses from poultry and livestock pose continuous threats to human beings. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	9
51	Propionate alleviates palmitic acid–induced endoplasmic reticulum stress by enhancing autophagy in calf hepatic cells. Journal of Dairy Science, 2021, 104, 9316-9326.	3.4	9
52	Germ cellâ€specific expression of Cre recombinase using the <i><scp>VASA</scp></i> promoter in the pig. FEBS Open Bio, 2016, 6, 50-55.	2.3	8
53	Immunogenicity evaluation of inactivated virus and purified proteins of porcine circovirus type 2 in mice. BMC Veterinary Research, 2018, 14, 137.	1.9	8
54	Investigation of the IncRNA THOR in Mice Highlights the Importance of Noncoding RNAs in Mammalian Male Reproduction. Biomedicines, 2021, 9, 859.	3.2	8

#	Article	IF	CITATIONS
55	CRISPR/Cas9-Mediated Specific Integration of Fat-1 and IGF-1 at the pRosa26 Locus. Genes, 2021, 12, 1027.	2.4	8
56	HMEJ-mediated site-specific integration of a myostatin inhibitor increases skeletal muscle mass in porcine. Molecular Therapy - Nucleic Acids, 2021, 26, 49-62.	5.1	8
57	Scriptaid affects histone acetylation and the expression of development-related genes at different stages of porcine somatic cell nuclear transfer embryo during early development. Science Bulletin, 2013, 58, 2044-2052.	1.7	7
58	Genomic imprinting analysis of Igf2/H19 in porcine cloned fetuses using parthenogenetic somatic cells as nuclear donors. Biotechnology Letters, 2014, 36, 1945-1952.	2.2	7
59	Expanded targeting scope and enhanced base editing efficiency in rabbit using optimized xCas9(3.7). Cellular and Molecular Life Sciences, 2019, 76, 4155-4164.	5.4	7
60	Pyroptosis executioner gasdermin D contributes to host defense and promotes Th 1 immune response during Neospora caninum infection. Veterinary Parasitology, 2020, 286, 109254.	1.8	7
61	Pathological alterations in the gastrointestinal tract of a porcine model of DMD. Cell and Bioscience, 2021, 11, 131.	4.8	7
62	DNA methylation-mediated silencing of neuronatin (NNAT) in pig parthenogenetic fetuses. Gene, 2014, 552, 204-208.	2.2	6
63	IWP2 impairs the development of porcine somatic cell nuclear transfer embryos via Wnt signaling pathway inactivation. Biomedical Reports, 2017, 7, 36-40.	2.0	6
64	Free fatty acids impair autophagic activity and activate nuclear factor kappa B signaling and NLR family pyrin domain containing 3 inflammasome in calf hepatocytes. Journal of Dairy Science, 2021, 104, 11973-11982.	3.4	6
65	Porcine TRIM21 Enhances Porcine Circovirus 2 Infection and Host Immune Responses, But Inhibits Apoptosis of PCV2-Infected Cells. Viruses, 2022, 14, 156.	3.3	6
66	A dark-to-bright reporter cell for classical swine fever virus infection. Antiviral Research, 2015, 117, 44-51.	4.1	5
67	Live Cell Reporter Systems for Positive-Sense Single Strand RNA Viruses. Applied Biochemistry and Biotechnology, 2016, 178, 1567-1585.	2.9	5
68	HMGCR inhibits the early stage of PCV2 infection, while PKC enhances the infection at the late stage*. Virus Research, 2017, 229, 41-47.	2.2	5
69	Porcine HMGCR Inhibits Porcine Circovirus Type 2 Infection by Directly Interacting with the Viral Proteins. Viruses, 2019, 11, 544.	3.3	5
70	Current Status of Genetically Modified Pigs That Are Resistant to Virus Infection. Viruses, 2022, 14, 417.	3.3	5
71	Porcine ZC3H11A Is Essential for the Proliferation of Pseudorabies Virus and Porcine Circovirus 2. ACS Infectious Diseases, 2022, , .	3.8	5
72	Elevated expression of vascular endothelial growth factor (VEGF) 120 in parthenogenetic porcine placentas. Biotechnology Letters, 2014, 36, 913-917.	2.2	4

#	Article	IF	CITATIONS
73	ï‰3â€polyunsaturated fatty acids suppress lipoproteinâ€associated phospholipase A2 expression in macrophages and animal models. Molecular Nutrition and Food Research, 2015, 59, 1771-1779.	3.3	4
74	Characterization and comparative analysis of immunoglobulin lambda chain diversity in a neonatal porcine model. Veterinary Immunology and Immunopathology, 2018, 195, 84-91.	1.2	4
75	Abnormality of hepatic triglyceride metabolism in Apc/+ mice with colon cancer cachexia. Life Sciences, 2019, 227, 201-211.	4.3	4
76	Pig Cloning Using Somatic Cell Nuclear Transfer. Methods in Molecular Biology, 2021, 2239, 1-18.	0.9	4
77	TERT Promoter Revertant Mutation Inhibits Melanoma Growth through Intrinsic Apoptosis. Biology, 2022, 11, 141.	2.8	3
78	Single particle labeling of RNA virus in live cells. Virus Research, 2017, 237, 14-21.	2.2	2
79	Magnetic Multiarm Scaffold for the One-Step Purification of Epitope-Specific Neutralizing Antibodies. Analytical Chemistry, 2019, 91, 6172-6179.	6.5	2
80	Overexpression of NPC1L1 in the livers of transgenic Bama miniature pigs accelerates lipid peroxidation. Genes and Genomics, 2015, 37, 183-191.	1.4	1
81	Generation of a pHSPA6 gene-based multifunctional live cell sensor. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118919.	4.1	1
82	Nitro-oleic acid decreases transcription of the angiotensin II type I receptor gene in aortic smooth muscle cells. Biotechnology and Bioprocess Engineering, 2014, 19, 740-746.	2.6	0
83	AbSE Workflow: Rapid Identification of the Coding Sequence and Linear Epitope of the Monoclonal Antibody at the Single-cell Level. ACS Synthetic Biology, 2022, 11, 1856-1864.	3.8	O