
Jenneke Klein-Nulend

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1274199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanotransduction in boneâ \in "role of the lacunocanalicular network. FASEB Journal, 1999, 13, S101.	0.2	754
2	Sensitivity of osteocytes to biomechanical stress in vitro. FASEB Journal, 1995, 9, 441-445.	0.2	701
3	Mechanosensation and transduction in osteocytes. Bone, 2013, 54, 182-190.	1.4	390
4	Cellulose and its derivatives: towards biomedical applications. Cellulose, 2021, 28, 1893-1931.	2.4	386
5	The production of nitric oxide and prostaglandin E2 by primary bone cells is shear stress dependent. Journal of Biomechanics, 2001, 34, 671-677.	0.9	276
6	Pulsating Fluid Flow Stimulates Prostaglandin Release and Inducible Prostaglandin G/H Synthase mRNA Expression in Primary Mouse Bone Cells. Journal of Bone and Mineral Research, 1997, 12, 45-51.	3.1	260
7	Mechanical loading and how it affects bone cells: The role of the osteocyte cytoskeleton in maintaining our skeleton. , 2012, 24, 278-291.		256
8	Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon—a proposal. Journal of Biomechanics, 2003, 36, 1453-1459.	0.9	214
9	Osteocyte morphology in fibula and calvaria — Is there a role for mechanosensing?. Bone, 2008, 43, 452-458.	1.4	197
10	Adipose Tissue-Derived Mesenchymal Stem Cells Acquire Bone Cell-Like Responsiveness to Fluid Shear Stress on Osteogenic Stimulation. Tissue Engineering, 2005, 11, 1780-1788.	4.9	188
11	Stem Cells from Adipose Tissue Allow Challenging New Concepts for Regenerative Medicine. Tissue Engineering, 2007, 13, 1799-1808.	4.9	184
12	Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone, 2007, 41, 745-751.	1.4	177
13	<i>PLS3</i> Mutations in X-Linked Osteoporosis with Fractures. New England Journal of Medicine, 2013, 369, 1529-1536.	13.9	171
14	Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochemical and Biophysical Research Communications, 2004, 315, 823-829.	1.0	166
15	Shear stress inhibits while disuse promotes osteocyte apoptosis. Biochemical and Biophysical Research Communications, 2004, 320, 1163-1168.	1.0	156
16	Aging, Osteocytes, and Mechanotransduction. Current Osteoporosis Reports, 2017, 15, 401-411.	1.5	156
17	Dynamic shear stress in parallel-plate flow chambers. Journal of Biomechanics, 2005, 38, 159-167.	0.9	154
18	A comparison of strain and fluid shear stress in stimulating bone cell responses—a computational and experimental study. FASEB Journal, 2005, 19, 1-22.	0.2	152

#	Article	IF	CITATIONS
19	Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density — Is there a role for mechanosensing?. Bone, 2009, 45, 321-329.	1.4	139
20	Mechanical stimulation by intermittent hydrostatic compression promotes bone-specific gene expression in vitro. Journal of Biomechanics, 1995, 28, 1493-1503.	0.9	132
21	Round versus flat: Bone cell morphology, elasticity, and mechanosensing. Journal of Biomechanics, 2008, 41, 1590-1598.	0.9	131
22	Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation. Biochemical and Biophysical Research Communications, 2006, 348, 1082-1088.	1.0	130
23	The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts. Biochemical and Biophysical Research Communications, 2005, 330, 341-348.	1.0	127
24	Bone cell responses to highâ€frequency vibration stress: does the nucleus oscillate within the cytoplasm?. FASEB Journal, 2006, 20, 858-864.	0.2	122
25	Function of Osteocytes in Bone—Their Role in Mechanotransduction. Journal of Nutrition, 1995, 125, 2020S-2023S.	1.3	110
26	Bone cell mechanosensitivity, estrogen deficiency, and osteoporosis. Journal of Biomechanics, 2015, 48, 855-865.	0.9	107
27	Mechanical loading stimulates the release of transforming growth factor-? activity by cultured mouse calvariae and periosteal cells. Journal of Cellular Physiology, 1995, 163, 115-119.	2.0	106
28	Mechanical stimulation of osteopontin mRNA expression and synthesis in bone cell cultures. , 1997, 170, 174-181.		102
29	Early activation of the β-catenin pathway in osteocytes is mediated by nitric oxide, phosphatidyl inositol-3 kinase/Akt, and focal adhesion kinase. Biochemical and Biophysical Research Communications, 2010, 391, 364-369.	1.0	99
30	Low-intensity pulsed ultrasound increases bone volume, osteoid thickness and mineral apposition rate in the area of fracture healing in patients with a delayed union of the osteotomized fibula. Bone, 2008, 43, 348-354.	1.4	95
31	Pulsating fluid flow modulates gene expression of proteins involved in Wnt signaling pathways in osteocytes. Journal of Orthopaedic Research, 2009, 27, 1280-1287.	1.2	95
32	Osteocyte and bone structure. Current Osteoporosis Reports, 2003, 1, 5-10.	1.5	94
33	Buccal Fat Pad, an Oral Access Source of Human Adipose Stem Cells with Potential for Osteochondral Tissue Engineering: An <i>In Vitro</i> Study. Tissue Engineering - Part C: Methods, 2010, 16, 1083-1094.	1.1	92
34	Journal of Bone and Mineral Research. Journal of Bone and Mineral Research, 1992, 7, S397-S401.	3.1	87
35	Application of Additive Manufacturing in Oral and Maxillofacial Surgery. Journal of Oral and Maxillofacial Surgery, 2015, 73, 2408-2418.	0.5	84
36	Inhibition of Osteoclastogenesis by Mechanically Loaded Osteocytes: Involvement of MEPE. Calcified Tissue International, 2010, 87, 461-468.	1.5	81

#	Article	IF	CITATIONS
37	IL-6 Alters Osteocyte Signaling toward Osteoblasts but Not Osteoclasts. Journal of Dental Research, 2014, 93, 394-399.	2.5	80
38	Bone Regeneration Using the Freshly Isolated Autologous Stromal Vascular Fraction of Adipose Tissue in Combination With Calcium Phosphate Ceramics. Stem Cells Translational Medicine, 2016, 5, 1362-1374.	1.6	80
39	Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model. Integrative Biology (United Kingdom), 2012, 4, 1198-1206.	0.6	76
40	Bio Imaging of Intracellular NO Production in Single Bone Cells After Mechanical Stimulation. Journal of Bone and Mineral Research, 2006, 21, 1722-1728.	3.1	69
41	Response of normal and osteoporotic human bone cells to mechanical stress in vitro. American Journal of Physiology - Endocrinology and Metabolism, 1998, 274, E1113-E1120.	1.8	67
42	Bone Tissue Regeneration in the Oral and Maxillofacial Region: A Review on the Application of Stem Cells and New Strategies to Improve Vascularization. Stem Cells International, 2019, 2019, 1-15.	1.2	65
43	Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E389-E395.	1.8	64
44	Cytokines TNF- <i>α</i> , IL-6, IL-17F, and IL-4 Differentially Affect Osteogenic Differentiation of Human Adipose Stem Cells. Stem Cells International, 2016, 2016, 1-9.	1.2	64
45	Nitric oxide signaling in mechanical adaptation of bone. Osteoporosis International, 2013, 25, 1427-37.	1.3	62
46	Transforming growth factor-β1 incorporated in calcium phosphate cement stimulates osteotransductivity in rat calvarial bone defects. Clinical Oral Implants Research, 2001, 12, 609-616.	1.9	61
47	The Src Inhibitor AZD0530 Reversibly Inhibits the Formation and Activity of Human Osteoclasts. Molecular Cancer Research, 2009, 7, 476-488.	1.5	61
48	Mechanical loading prevents the stimulating effect of IL-1β on osteocyte-modulated osteoclastogenesis. Biochemical and Biophysical Research Communications, 2012, 420, 11-16.	1.0	61
49	Systemic Inflammation Affects Human Osteocyte-Specific Protein and Cytokine Expression. Calcified Tissue International, 2016, 98, 596-608.	1.5	60
50	Biocompatibility of Polypyrrole with Human Primary Osteoblasts and the Effect of Dopants. PLoS ONE, 2015, 10, e0134023.	1.1	58
51	Interactive effects of PTH and mechanical stress on nitric oxide and PGE ₂ production by primary mouse osteoblastic cells. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E608-E613.	1.8	56
52	Extracellular NO signalling from a mechanically stimulated osteocyte. Journal of Biomechanics, 2007, 40, S89-S95.	0.9	55
53	Inhibition of osteoclastic bone resorption by mechanical stimulation in vitro. Arthritis and Rheumatism, 1990, 33, 66-72.	6.7	53
54	Mechanical stress induces COX-2 mRNA expression in bone cells from elderly women. Journal of Biomechanics, 2000, 33, 53-61.	0.9	52

#	Article	IF	CITATIONS
55	Strontium Ranelate affects signaling from mechanically-stimulated osteocytes towards osteoclasts and osteoblasts. Bone, 2013, 53, 112-119.	1.4	50
56	Mechanical Loading by Fluid Shear Stress of Myotube Glycocalyx Stimulates Growth Factor Expression and Nitric Oxide Production. Cell Biochemistry and Biophysics, 2014, 69, 411-419.	0.9	49
57	A histomorphometric and micro–computed tomography study ofÂbone regeneration in the maxillary sinus comparing biphasic calcium phosphate and deproteinized cancellous bovine bone in a human split-mouth model. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2014, 117, 8-22.	0.2	47
58	Polyamines Modulate Nitric Oxide Production andCox-2Gene Expression in Response to Mechanical Loading in Human Adipose Tissue-Derived Mesenchymal Stem Cells. Stem Cells, 2006, 24, 2262-2269.	1.4	46
59	Blood Vessel Formation and Bone Regeneration Potential of the Stromal Vascular Fraction Seeded on a Calcium Phosphate Scaffold in the Human Maxillary Sinus Floor Elevation Model. Materials, 2018, 11, 161.	1.3	43
60	CXCL8 and CCL20 Enhance Osteoclastogenesis via Modulation of Cytokine Production by Human Primary Osteoblasts. PLoS ONE, 2015, 10, e0131041.	1.1	41
61	Age-related changes in female mouse cortical bone microporosity. Bone, 2018, 113, 1-8.	1.4	41
62	3D-printed poly(ƕcaprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103638.	1.5	40
63	Mechanical Loading Stimulates BMP7, But Not BMP2, Production by Osteocytes. Calcified Tissue International, 2011, 89, 318-326.	1.5	39
64	Mechanical Loading Differentially Affects Osteocytes in Fibulae from Lactating Mice Compared to Osteocytes in Virgin Mice: Possible Role for Lacuna Size. Calcified Tissue International, 2018, 103, 675-685.	1.5	38
65	Short (15 Minutes) Bone Morphogenetic Protein-2 Treatment Stimulates Osteogenic Differentiation of Human Adipose Stem Cells Seeded on Calcium Phosphate Scaffolds In Vitro. Tissue Engineering - Part A, 2013, 19, 571-581.	1.6	37
66	Diet and Exercise: a Match Made in Bone. Current Osteoporosis Reports, 2017, 15, 555-563.	1.5	37
67	Release of nitric oxide, but not prostaglandin E2, by bone cells depends on fluid flow frequency. Journal of Orthopaedic Research, 2006, 24, 1170-1177.	1.2	36
68	Mechanical Loading Reduces Inflammation-Induced Human Osteocyte-to-Osteoclast Communication. Calcified Tissue International, 2015, 97, 169-178.	1.5	36
69	The Osteocyte as the New Discovery of Therapeutic Options in Rare Bone Diseases. Frontiers in Endocrinology, 2020, 11, 405.	1.5	35
70	Human Maxillary Sinus Floor Elevation as a Model for Bone Regeneration Enabling the Application of One-Step Surgical Procedures. Tissue Engineering - Part B: Reviews, 2013, 19, 69-82.	2.5	34
71	Mechanical Stimulation and IGFâ€1 Enhance mRNA Translation Rate in Osteoblasts Via Activation of the AKTâ€mTOR Pathway. Journal of Cellular Physiology, 2016, 231, 1283-1290.	2.0	33
72	Initial Stress-Kick Is Required for Fluid Shear Stress-Induced Rate Dependent Activation of Bone Cells. Annals of Biomedical Engineering, 2005, 33, 104-110.	1.3	32

#	Article	IF	CITATIONS
73	VDR dependent and independent effects of 1,25-dihydroxyvitamin D3 on nitric oxide production by osteoblasts. Steroids, 2012, 77, 126-131.	0.8	32
74	Studies on Osteocytes in Their 3D Native Matrix Versus 2D In Vitro Models. Current Osteoporosis Reports, 2019, 17, 207-216.	1.5	32
75	Inflammatory factors in the circulation of patients with active rheumatoid arthritis stimulate osteoclastogenesis via endogenous cytokine production by osteoblasts. Osteoporosis International, 2014, 25, 2453-2463.	1.3	31
76	Increased Endoplasmic Reticulum Stress in Mouse Osteocytes with Aging Alters Cox-2 Response to Mechanical Stimuli. Calcified Tissue International, 2015, 96, 123-128.	1.5	29
77	ÂÂÂMechanosensitivity of aged muscle stem cells. Journal of Orthopaedic Research, 2018, 36, 632-641.	1.2	29
78	Evaluation of a new biphasic calcium phosphate for maxillary sinus floor elevation: Micro T and histomorphometrical analyses. Clinical Oral Implants Research, 2018, 29, 488-498.	1.9	29
79	Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(<i>$\hat{\mu}$</i>) Tj ET (Bristol), 2019, 14, 015008.	Qq1 1 0.7 1.7	84314 rgBT 29
80	Growth factor gene expression profiles of bone morphogenetic protein-2-treated human adipose stem cells seeded on calcium phosphate scaffolds inÂvitro. Biochimie, 2013, 95, 2304-2313.	1.3	27
81	Accuracy and reproducibility of mouse cortical bone microporosity as quantified by desktop microcomputed tomography. PLoS ONE, 2017, 12, e0182996.	1.1	27
82	Nitric Oxide is Involved in the Down-regulation of SOST Expression Induced by Mechanical Loading. Calcified Tissue International, 2014, 94, 414-422.	1.5	26
83	ILâ€6 counteracts the inhibitory effect of ILâ€4 on osteogenic differentiation of human adipose stem cells. Journal of Cellular Physiology, 2019, 234, 20520-20532.	2.0	25
84	Inlet flow rate of perfusion bioreactors affects fluid flow dynamics, but not oxygen concentration in 3D-printed scaffolds for bone tissue engineering: Computational analysis and experimental validation. Computers in Biology and Medicine, 2020, 124, 103826.	3.9	25
85	Differential Effects of Bone Morphogenetic Protein-2 and Transforming Growth Factor-β1 on Gene Expression of Collagen-Modifying Enzymes in Human Adipose Tissue–Derived Mesenchymal Stem Cells. Tissue Engineering - Part A, 2009, 15, 2213-2225.	1.6	24
86	MT1-MMP modulates the mechanosensitivity of osteocytes. Biochemical and Biophysical Research Communications, 2012, 417, 824-829.	1.0	24
87	Supraphysiological loading induces osteocyteâ€mediated osteoclastogenesis in a novel in vitro model for bone implant loosening. Journal of Orthopaedic Research, 2018, 36, 1425-1434.	1.2	23
88	ls There a Governing Role of Osteocytes in Bone Tissue Regeneration?. Current Osteoporosis Reports, 2020, 18, 541-550.	1.5	23
89	Aging related ER stress is not responsible for anabolic resistance in mouse skeletal muscle. Biochemical and Biophysical Research Communications, 2015, 468, 702-707.	1.0	22
90	Mechanically Loaded Myotubes Affect Osteoclast Formation. Calcified Tissue International, 2014, 94, 319-326.	1.5	21

#	Article	IF	CITATIONS
91	The 3D Printing of Calcium Phosphate with K-Carrageenan under Conditions Permitting the Incorporation of Biological Components—A Method. Journal of Functional Biomaterials, 2018, 9, 57.	1.8	21
92	Osteocytes: Mechanosensors of Bone and Orchestrators of Mechanical Adaptation. Clinical Reviews in Bone and Mineral Metabolism, 2007, 5, 195-209.	1.3	20
93	Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels. Stem Cells International, 2016, 2016, 1-12.	1.2	20
94	Biomimetic 3D-printed PCL scaffold containing a high concentration carbonated-nanohydroxyapatite with immobilized-collagen for bone tissue engineering: enhanced bioactivity and physicomechanical characteristics. Biomedical Materials (Bristol), 2021, 16, 065029.	1.7	19
95	Osteocyte morphology and orientation in relation to strain in the jaw bone. International Journal of Oral Science, 2018, 10, 2.	3.6	18
96	Endothelial Nitric Oxide Synthase is Not Essential for Nitric Oxide Production by Osteoblasts Subjected to Fluid Shear Stress In Vitro. Calcified Tissue International, 2013, 92, 228-239.	1.5	17
97	Physicochemical Niche Conditions and Mechanosensing by Osteocytes and Myocytes. Current Osteoporosis Reports, 2019, 17, 235-249.	1.5	17
98	K-Carrageenan Stimulates Pre-Osteoblast Proliferation and Osteogenic Differentiation: A Potential Factor for the Promotion of Bone Regeneration?. Molecules, 2021, 26, 6131.	1.7	17
99	Different responsiveness of cells from adult and neonatal mouse bone to mechanical and biochemical challenge. Journal of Cellular Physiology, 2001, 186, 366-370.	2.0	16
100	1,25-Dihydroxyvitamin D3—mediated transforming growth factor-β release is impaired in cultured osteoblasts from patients with multiple pituitary hormone deficiencies. Journal of Bone and Mineral Research, 1996, 11, 367-376.	3.1	16
101	A novel approach revealing the effect of a collagenous membrane on osteoconduction in maxillary sinus floor elevation with l ² -tricalcium phosphate. , 2013, 25, 215-228.		16
102	Shear Stress Modulates Osteoblast Cell and Nucleus Morphology and Volume. International Journal of Molecular Sciences, 2020, 21, 8361.	1.8	15
103	The novel endolysin XZ.700 effectively treats MRSA biofilms in two biofilm models without showing toxicity on human bone cells <i>in vitro</i> . Biofouling, 2021, 37, 184-193.	0.8	15
104	Alterations in osteocyte lacunar morphology affect local bone tissue strains. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104730.	1.5	15
105	Surface modification of silicone tubes by functional carboxyl and amine, but not peroxide groups followed by collagen immobilization improves endothelial cell stability and functionality. Biomedical Materials (Bristol), 2015, 10, 015024.	1.7	13
106	Myofiber stretch induces tensile and shear deformation of muscle stem cells in their native niche. Biophysical Journal, 2021, 120, 2665-2678.	0.2	13
107	Differences in proliferation, differentiation, and cytokine production by bone cells seeded on titanium–nitride and cobalt–chromium–molybdenum surfaces. Journal of Biomaterials Applications, 2013, 28, 278-287.	1.2	12
108	Noise enhances the rapid nitric oxide production by bone cells in response to fluid shear stress. Technology and Health Care, 2009, 17, 57-65.	0.5	11

#	Article	IF	CITATIONS
109	The Osteocyte as an Orchestrator of Bone Remodeling: An Engineer's Perspective. Clinical Reviews in Bone and Mineral Metabolism, 2014, 12, 2-13.	1.3	11
110	Immediate dental implant placement in calvarial bone grafts to rehabilitate the severely resorbed edentulous maxilla: A prospective pilot study. Journal of Cranio-Maxillo-Facial Surgery, 2019, 47, 23-28.	0.7	11
111	Incorporation of anterior iliac crest or calvarial bone grafts in reconstructed atrophied maxillae: A randomized clinical trial with histomorphometric and microâ€CT analyses. Clinical Implant Dentistry and Related Research, 2021, 23, 492-502.	1.6	10
112	Fluoride inhibits the response of bone cells to mechanical loading. Odontology / the Society of the Nippon Dental University, 2011, 99, 112-118.	0.9	8
113	Influence of Oxygen in the Cultivation of Human Mesenchymal Stem Cells in Simulated Microgravity: An Explorative Study. Microgravity Science and Technology, 2013, 25, 59-66.	0.7	8
114	Flow Preconditioning of Endothelial Cells on Collagenâ€Immobilized Silicone Fibers Enhances Cell Retention and Antithrombotic Function. Artificial Organs, 2017, 41, 556-567.	1.0	8
115	Hypothermia reduces VEGF-165 expression, but not osteogenic differentiation of human adipose stem cells under hypoxia. PLoS ONE, 2017, 12, e0171492.	1.1	8
116	Reduced growth rate of aged muscle stem cells is associated with impaired mechanosensitivity. Aging, 2022, 14, 28-53.	1.4	8
117	Mechanisms of Osteocyte Mechanotransduction. Clinical Reviews in Bone and Mineral Metabolism, 2010, 8, 163-169.	1.3	7
118	Biomimetic modification of silicone tubes using sodium nitrite–collagen immobilization accelerates endothelialization. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1311-1321.	1.6	7
119	Increased Osteogenic Potential of Pre-Osteoblasts on Three-Dimensional Printed Scaffolds Compared to Porous Scaffolds for Bone Regeneration. Iranian Biomedical Journal, 2021, 25, 78-87.	0.4	7
120	Nanoliposomal Growth Hormone and Sodium Nitrite Release from Silicone Fibers Reduces Thrombus Formation Under Flow. Annals of Biomedical Engineering, 2016, 44, 2417-2430.	1.3	6
121	Polymethyl methacrylate does not adversely affect the osteogenic potential of human adipose stem cells or primary osteoblasts. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1536-1545.	1.6	6
122	Histomorphometric and micro T analyses of calvarial bone grafts used to reconstruct the extremely atrophied maxilla. Clinical Implant Dentistry and Related Research, 2020, 22, 593-601.	1.6	6
123	Correlation of clinical manifestations and condylar morphology of patients with temporomandibular degenerative joint diseases. Cranio - Journal of Craniomandibular Practice, 2022, , 1-8.	0.6	6
124	Microgravity and bone cell mechanosensitivity: FLOW experiment during the DELTA mission. Microgravity Science and Technology, 2007, 19, 133-137.	0.7	5
125	Bone cells from patients with quiescent Crohn's disease show a reduced growth potential and an impeded maturation. Journal of Cellular Biochemistry, 2012, 113, 2424-2431.	1.2	5
126	Sustained release of growth hormone and sodium nitrite from biomimetic collagen coating immobilized on silicone tubes improves endothelialization. Materials Science and Engineering C, 2017, 77, 1204-1215.	3.8	5

#	Article	IF	CITATIONS
127	RGDâ€functionalized supported lipid bilayers modulate preâ€osteoblast adherence and promote osteogenic differentiation. Journal of Biomedical Materials Research - Part A, 2020, 108, 923-937.	2.1	5
128	Pulsating fluid flow affects preâ€osteoblast behavior and osteogenic differentiation through production of soluble factors. Physiological Reports, 2021, 9, e14917.	0.7	5
129	Bone Microenvironment, Stem Cells, and Bone Tissue Regeneration. Stem Cells International, 2017, 2017, 1-2.	1.2	4
130	Fibrin network adaptation to cell-generated forces. Rheologica Acta, 2018, 57, 603-610.	1.1	4
131	Bioprinting of Alginate-Encapsulated Pre-osteoblasts in PLGA/β-TCP Scaffolds Enhances Cell Retention but Impairs Osteogenic Differentiation Compared to Cell Seeding after 3D-Printing. Regenerative Engineering and Translational Medicine, 2021, 7, 485-493.	1.6	4
132	A Three-Dimensional Mechanical Loading Model of Human Osteocytes in Their Native Matrix. Calcified Tissue International, 2022, 110, 367-379.	1.5	4
133	Low-intensity pulsed ultrasound increases blood vessel size during fracture healing in patients with a delayed-union of the osteotomized fibula. Histology and Histopathology, 2018, 33, 737-746.	0.5	4
134	BONE ADAPTATION AND REGENERATION – NEW DEVELOPMENTS. International Journal of Modern Physics Conference Series, 2012, 17, 34-43.	0.7	3
135	Mechanoresponsiveness of human adipose stem cells on nanocomposite and microâ€hybrid composite. Journal of Biomedical Materials Research - Part A, 2017, 105, 2986-2994.	2.1	3
136	Collaboration Around Rare Bone Diseases Leads to the Unique Organizational Incentive of the Amsterdam Bone Center. Frontiers in Endocrinology, 2020, 11, 481.	1.5	3
137	Short Pretreatment with Calcitriol Is Far Superior to Continuous Treatment in Stimulating Proliferation and Osteogenic Differentiation of Human Adipose Stem Cells. Cell Journal, 2020, 22, 293-301.	0.2	3
138	Biologically Relevant In Vitro 3D-Model to Study Bone Regeneration Potential of Human Adipose Stem Cells. Biomolecules, 2022, 12, 169.	1.8	2
139	Fluid shear stress-induced mechanotransduction in myoblasts: Does it depend on the glycocalyx?. Experimental Cell Research, 2022, 417, 113204.	1.2	2
140	Mechanosensing in Bone. Clinical Reviews in Bone and Mineral Metabolism, 2010, 8, 161-162.	1.3	1
141	Serum of patients with active rheumatoid arthritis inhibits differentiation of osteochondrogenic precursor cells. Connective Tissue Research, 2016, 57, 226-235.	1.1	1
142	Stiff matrices enhance myoblast proliferation, reduce differentiation, and alter the response to fluid shear stress in vitro. Cell Biochemistry and Biophysics, 2022, 80, 161.	0.9	1
143	Strontium ranelate and conditioned medium from mechanically-stimulated human bone cells both enhance osteogenic differentiation of mesenchymal stem cells. Bone Abstracts, 0, , .	0.0	0
144	PLS3 mutations in X-linked osteoporosis with fractures. Bone Abstracts, 0, , .	0.0	0

#	Article	IF	CITATIONS
145	IGF1 stimulates protein synthesis by enhancing mRNA translation rate in osteoblasts. Bone Abstracts, 0, , .	0.0	0
146	CXCL8 and CCL20 enhance osteoblast-mediated osteoclastogenesis. Bone Abstracts, 0, , .	0.0	0
147	Serum of patients with active rheumatoid arthritis inhibits differentiation of osteochondrogenic precursor cells. Bone Abstracts, 0, , .	0.0	0