List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/127398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of innovative clean label emulsions stabilized by vegetable proteins. International Journal of Food Science and Technology, 2023, 58, 406-422.	2.7	14
2	Improving nutritional quality of unripe tomato through fermentation by a consortium of yeast and lactic acid bacteria. Journal of the Science of Food and Agriculture, 2022, 102, 1422-1429.	3.5	6
3	Yoghurt as a starter in sourdough fermentation to improve the technological and functional properties of sourdough-wheat bread. Journal of Functional Foods, 2022, 88, 104877.	3.4	15
4	Improving the Nutritional, Structural, and Sensory Properties of Gluten-Free Bread with Different Species of Microalgae. Foods, 2022, 11, 397.	4.3	19
5	Clean Label "Rocha―Pear (Pyrus communis L.) Snack Containing Juice By-Products and Euglena gracilis Microalgae. Frontiers in Nutrition, 2022, 9, 825999.	3.7	3
6	Development of Healthy Protein-Rich Crackers Using Tenebrio molitor Flour. Foods, 2022, 11, 702.	4.3	15
7	Innovative and Healthier Dairy Products through the Addition of Microalgae: A Review. Foods, 2022, 11, 755.	4.3	20
8	Food By-Product Valorization by Using Plant-Based Coagulants Combined with AOPs for Agro-Industrial Wastewater Treatment. International Journal of Environmental Research and Public Health, 2022, 19, 4134.	2.6	8
9	Acorn flour and sourdough: an innovative combination to improve gluten free bread characteristics. European Food Research and Technology, 2022, 248, 1691-1702.	3.3	8
10	Digestibility of Meat Mineral and Proteins from Broilers Fed with Graded Levels of Chlorella vulgaris. Foods, 2022, 11, 1345.	4.3	5
11	Lupin Protein Concentrate as a Novel Functional Food Additive That Can Reduce Colitis-Induced Inflammation and Oxidative Stress. Nutrients, 2022, 14, 2102.	4.1	4
12	A rheological approach to 3D printing of plasma protein based doughs. Journal of Food Engineering, 2021, 288, 110255.	5.2	45
13	Application of the CATA methodology with children: Qualitative approach on ballot development and product characterization of innovative products. Food Quality and Preference, 2021, 88, 104083.	4.6	8
14	Yoghurt and curd cheese addition to wheat bread dough: Impact on in vitro starch digestibility and estimated glycemic index. Food Chemistry, 2021, 339, 127887.	8.2	22
15	Development and physicochemical characterization of a new grass pea (Lathyrus sativus L.) miso. Journal of the Science of Food and Agriculture, 2021, 101, 2227-2234.	3.5	6
16	Modelling Processes and Products in the Cereal Chain. Foods, 2021, 10, 82.	4.3	4
17	The key role of thermal waters in the development of innovative gelled starch-based matrices. Food Hydrocolloids, 2021, 117, 106697.	10.7	3
18	Technological Potential of a Lupin Protein Concentrate as a Nutraceutical Delivery System in Baked Cookies. Foods, 2021, 10, 1929.	4.3	7

#	Article	IF	CITATIONS
19	Sourdough Fermentation as a Tool to Improve the Nutritional and Health-Promoting Properties of Its Derived-Products. Fermentation, 2021, 7, 246.	3.0	16
20	Technological Feasibility of Couscous-Algae-Supplemented Formulae: Process Description, Nutritional Properties and In Vitro Digestibility. Foods, 2021, 10, 3159.	4.3	15
21	Sarcocornia perennis: A Salt Substitute in Savory Snacks. Foods, 2021, 10, 3110.	4.3	11
22	Lupinus albus Protein Components Inhibit MMP-2 and MMP-9 Gelatinolytic Activity In Vitro and In Vivo. International Journal of Molecular Sciences, 2021, 22, 13286.	4.1	6
23	Microalgal cell disruption: Effect on the bioactivity and rheology of wheat bread. Algal Research, 2020, 45, 101749.	4.6	38
24	Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. Algal Research, 2020, 45, 101743.	4.6	70
25	Glycemic Response and Bioactive Properties of Gluten-Free Bread with Yoghurt or Curd-Cheese Addition. Foods, 2020, 9, 1410.	4.3	11
26	Microalgae biomass as an additional ingredient of gluten-free bread: Dough rheology, texture quality and nutritional properties. Algal Research, 2020, 50, 101998.	4.6	65
27	Microalgae as sustainable food: incorporation as strategy in the formulation of functional food. , 2020, , 19-30.		1
28	Lupin Seed Protein Extract Can Efficiently Enrich the Physical Properties of Cookies Prepared with Alternative Flours. Foods, 2020, 9, 1064.	4.3	16
29	Acorn Flour as a Source of Bioactive Compounds in Gluten-Free Bread. Molecules, 2020, 25, 3568.	3.8	26
30	Improving the Technological and Nutritive Properties of Gluten-Free Bread by Fresh Curd Cheese Enrichment. Applied Sciences (Switzerland), 2020, 10, 6868.	2.5	3
31	Impact of Acorn Flour on Gluten-Free Dough Rheology Properties. Foods, 2020, 9, 560.	4.3	16
32	Tetraselmis chuii as a Sustainable and Healthy Ingredient to Produce Gluten-Free Bread: Impact on Structure, Colour and Bioactivity. Foods, 2020, 9, 579.	4.3	31
33	Psyllium husk gel to reinforce structure of gluten-free pasta?. LWT - Food Science and Technology, 2020, 131, 109787.	5.2	17
34	Yogurt as an Alternative Ingredient to Improve the Functional and Nutritional Properties of Gluten-Free Breads. Foods, 2020, 9, 111.	4.3	17
35	Environmentally friendly processing of Laminaria ochroleuca for soft food applications with bioactive properties. Journal of Applied Phycology, 2020, 32, 1455-1465.	2.8	8
36	Rheology Methods as a Tool to Study the Impact of Whey Powder on the Dough and Breadmaking Performance of Wheat Flour. Fluids, 2020, 5, 50.	1.7	7

#	Article	IF	CITATIONS
37	Improving the nutritional performance of gluten-free pasta with potato peel autohydrolysis extract. Innovative Food Science and Emerging Technologies, 2020, 63, 102374.	5.6	17
38	Pasta Enrichment with an Amaranth Hydrolysate Affects the Overall Acceptability while Maintaining Antihypertensive Properties. Foods, 2019, 8, 282.	4.3	19
39	Exploring innovation in a traditional sweet pastry: Pastel de Nata. International Journal of Gastronomy and Food Science, 2019, 17, 100160.	3.0	7
40	Psyllium and Laminaria Partnership—An Overview of Possible Food Gel Applications. Applied Sciences (Switzerland), 2019, 9, 4356.	2.5	3
41	Wheat Bread with Dairy Products—Technology, Nutritional, and Sensory Properties. Applied Sciences (Switzerland), 2019, 9, 4101.	2.5	24
42	Development of a fermented green tomato base for dressings and sauces with high nutritional value. Acta Horticulturae, 2019, , 239-246.	0.2	4
43	Development of new microalgae-based sourdough "crostini― functional effects of Arthrospira platensis (spirulina) addition. Scientific Reports, 2019, 9, 19433.	3.3	56
44	Microalgae as Functional Ingredients in Savory Food Products: Application to Wheat Crackers. Foods, 2019, 8, 611.	4.3	86
45	Edible Brown Seaweed in Gluten-Free Pasta: Technological and Nutritional Evaluation. Foods, 2019, 8, 622.	4.3	28
46	Paddy rice stored under hermetic conditions: The effect of relative humidity, temperature and storage time in suppressing Sitophilus zeamais and impact on rice quality. Journal of Stored Products Research, 2019, 80, 21-27.	2.6	14
47	Functional and thermorheological properties of rice flour gels for glutenâ€free pasta applications. International Journal of Food Science and Technology, 2019, 54, 1109-1120.	2.7	18
48	Impact of Chlorella vulgaris on the rheology of wheat flour dough and bread texture. LWT - Food Science and Technology, 2018, 89, 466-474.	5.2	85
49	Thermal gelation of mixed egg yolk/kappa-carrageenan dispersions. Carbohydrate Polymers, 2017, 161, 172-180.	10.2	23
50	Tetramethylguanidine-based gels and colloids of cellulose. Carbohydrate Polymers, 2017, 169, 58-64.	10.2	9
51	Assessing gelling properties of chia (<i>Salvia hispanica</i> L.) flour through rheological characterization. Journal of the Science of Food and Agriculture, 2017, 97, 1753-1760.	3.5	14
52	Evaluation of Marine Microalga Diacronema vlkianum Biomass Fatty Acid Assimilation in Wistar Rats. Molecules, 2017, 22, 1097.	3.8	8
53	Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research, 2017, 26, 161-171.	4.6	226
54	Rheological behavior of aqueous dispersions containing blends of rhamsan and welan polysaccharides with an eco-friendly surfactant. Colloids and Surfaces B: Biointerfaces, 2016, 145, 430-437.	5.0	10

#	Article	IF	CITATIONS
55	Rheology changes in oil-in-water emulsions stabilized by a complex system of animal and vegetable proteins induced by thermal processing. LWT - Food Science and Technology, 2016, 74, 263-270.	5.2	23
56	Development and rheological properties of ecological emulsions formulated with a biosolvent and two microbial polysaccharides. Colloids and Surfaces B: Biointerfaces, 2016, 141, 53-58.	5.0	41
57	Protein gels and emulsions from mixtures of Cape hake and pea proteins. Journal of the Science of Food and Agriculture, 2015, 95, 289-298.	3.5	22
58	Characterization of a Novel Intrinsic Luminescent Roomâ€Temperature Ionic Liquid Based on [P _{6,6,6,14}][ANS]. Chemistry - A European Journal, 2015, 21, 726-732.	3.3	14
59	Developing consumer acceptable biscuits enriched with Psyllium fibre. Journal of Food Science and Technology, 2015, 52, 4830-4840.	2.8	41
60	Influence of Na+, K+ and Ca2+ on mechanical and structural properties of gels from chestnut and rice flours. Carbohydrate Polymers, 2014, 102, 30-37.	10.2	8
61	Thermorheological and Textural Behaviour of Gluten-Free Gels Obtained from Chestnut and Rice Flours. Food and Bioprocess Technology, 2014, 7, 1171-1182.	4.7	26
62	Effect of Psyllium fibre content on the textural and rheological characteristics of biscuit and biscuit dough. Bioactive Carbohydrates and Dietary Fibre, 2014, 3, 96-105.	2.7	73
63	Effect of sucrose, stevia and xylitol on rheological properties of gels from blends of chestnut and rice flours. Carbohydrate Polymers, 2013, 98, 249-256.	10.2	41
64	Insights on the safety of carotenogenic Chlorella vulgaris in rodents. Algal Research, 2013, 2, 409-415.	4.6	14
65	Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Research, 2013, 2, 164-173.	4.6	323
66	Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA's source. LWT - Food Science and Technology, 2013, 50, 312-319.	5.2	118
67	Novel foods with microalgal ingredients – Effect of gel setting conditions on the linear viscoelasticity of Spirulina and Haematococcus gels. Journal of Food Engineering, 2012, 110, 182-189.	5.2	54
68	Properties of protein powder prepared from Cape hake by-products. Journal of Food Engineering, 2012, 108, 268-275.	5.2	43
69	From egg yolk/κ-Carrageenan dispersions to gel systems: Linear viscoelasticity and texture analysis. Food Hydrocolloids, 2011, 25, 654-658.	10.7	26
70	Microalgae biomass interaction in biopolymer gelled systems. Food Hydrocolloids, 2011, 25, 817-825.	10.7	37
71	Incorporation of <i>Chlorella vulgaris</i> and <i>Spirulina maxima</i> biomass in pasta products. Part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture, 2010, 90, 1656-1664.	3.5	194
72	Effect of thermal treatment and composition on the mechanical properties of pea / kappa-carrageenan / starch desserts. Special Publication - Royal Society of Chemistry, 2009, , 54-64.	0.0	5

#	Article	IF	CITATIONS
73	Effect of principal ingredients on quality of cookies with dietary fibre. Special Publication - Royal Society of Chemistry, 2009, , 475-483.	0.0	1
74	Functional biscuits with PUFAâ€i‰3 from <i>Isochrysis galbana</i> . Journal of the Science of Food and Agriculture, 2008, 88, 891-896.	3.5	108
75	<i>Spirulina maxima</i> and <i>Diacronema vlkianum</i> microalgae in vegetable gelled desserts. Nutrition and Food Science, 2008, 38, 492-501.	0.9	41
76	Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innovative Food Science and Emerging Technologies, 2007, 8, 433-436.	5.6	139
77	Comparison of Physicochemical Properties of New Ionic Liquids Based on Imidazolium, Quaternary Ammonium, and Guanidinium Cations. Chemistry - A European Journal, 2007, 13, 8478-8488.	3.3	207
78	Extensional flow behaviour of natural fibre-filled dough and its relationship with structure and properties. Journal of Non-Newtonian Fluid Mechanics, 2006, 137, 72-80.	2.4	40
79	Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. European Food Research and Technology, 2006, 222, 362-367.	3.3	109
80	Gelled vegetable desserts containing pea protein, κ-carrageenan and starch. European Food Research and Technology, 2006, 222, 622-628.	3.3	33
81	Colored Food Emulsions—Implications of Pigment Addition on the Rheological Behavior and Microstructure. Food Biophysics, 2006, 1, 216-227.	3.0	27
82	Rheological characterization of coloured oil-in-water food emulsions with lutein and phycocyanin added to the oil and aqueous phases. Food Hydrocolloids, 2006, 20, 44-52.	10.7	119
83	Rheological behaviour and microstructure of pea protein/κ-carrageenan/starch gels with different setting conditions. Food Hydrocolloids, 2006, 20, 106-113.	10.7	94
84	Accessing gelling ability of vegetable proteins using rheological and fluorescence techniques. International Journal of Biological Macromolecules, 2005, 36, 135-143.	7.5	67
85	Fat mimetic capacity of Chlorella vulgaris biomass in oil-in-water food emulsions stabilized by pea protein. Food Research International, 2005, 38, 961-965.	6.2	67
86	The avrRxo1 Gene from the Rice Pathogen Xanthomonas oryzae pv. oryzicola Confers a Nonhost Defense Reaction on Maize with Resistance Gene Rxo1. Molecular Plant-Microbe Interactions, 2004, 17, 771-779.	2.6	97
87	Vegetable proteins and milk puddings. Colloids and Surfaces B: Biointerfaces, 2003, 31, 21-29.	5.0	58
88	Optimization of the composition of low-fat oil-in-water emulsions stabilized by white lupin protein. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 783-790.	1.9	53
89	Rheological behaviour of white pepper gels—a new method for studying the effect of irradiation. Radiation Physics and Chemistry, 2002, 64, 323-329.	2.8	9
90	EFFECT OF pH AND NaCI ON RHEOLOGICAL AND TEXTURAL PROPERTIES OF LUPIN PROTEIN EMULSIONS.		1

2000, , 350-365.

#	Article	IF	CITATIONS
91	Effect of the lupin protein/surfactant ratio on linear viscoelastic properties of oil-in-water emulsions. Journal of Surfactants and Detergents, 1999, 2, 545-551.	2.1	15
92	Effect of thermal denaturation of lupin protein on its emulsifying properties. Molecular Nutrition and Food Research, 1998, 42, 220-224.	0.0	35
93	White lupin protein isolate as a foaming agent. European Food Research and Technology, 1998, 207, 91-96.	0.6	16
94	Method to evaluate foaming performance. Journal of Food Engineering, 1998, 36, 445-452.	5.2	28
95	Influence of Processing Variables on the Rheological and Textural Properties of Lupin Protein-Stabilized Emulsions. Journal of Agricultural and Food Chemistry, 1998, 46, 3109-3115.	5.2	71
96	New Alternatives to Milk From Pulses: Chickpea and Lupin Beverages With Improved Digestibility and Potential Bioactivities for Human Health. Frontiers in Nutrition, 0, 9, .	3.7	3