Romain Quentin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1273267/publications.pdf

Version: 2024-02-01

1307594 1058476 14 487 7 14 citations g-index h-index papers 16 16 16 736 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	How does the length of short rest periods affect implicit probabilistic learning?. NeuroImage Reports, 2022, 2, 100078.	1.0	4
2	Decoding personalized motor cortical excitability states from human electroencephalography. Scientific Reports, 2022, 12, 6323.	3.3	5
3	Voluntary Motor Command Release Coincides with Restricted Sensorimotor Beta Rhythm Phases. Journal of Neuroscience, 2022, 42, 5771-5781.	3.6	8
4	Consolidation of human skill linked to waking hippocampo-neocortical replay. Cell Reports, 2021, 35, 109193.	6.4	51
5	Statistical learning occurs during practice while high-order rule learning during rest period. Npj Science of Learning, 2021, 6, 14.	2.8	15
6	Basal ganglia activation localized in MEG using a reward task. NeuroImage Reports, 2021, 1, 100034.	1.0	2
7	From visual awareness to consciousness without sensory input: The role of spontaneous brain activity. Cognitive Neuropsychology, 2020, 37, 216-219.	1.1	1
8	Plasticity and recovery of function. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 163, 473-483.	1.8	4
9	Entrainment of local synchrony reveals a causal role for high-beta right frontal oscillations in human visual consciousness. Scientific Reports, 2019, 9, 14510.	3.3	17
10	Differential Brain Mechanisms of Selection and Maintenance of Information during Working Memory. Journal of Neuroscience, 2019, 39, 3728-3740.	3.6	51
11	Reversing working memory decline in the elderly. Nature Neuroscience, 2019, 22, 686-688.	14.8	7
12	MNE-BIDS: Organizing electrophysiological data into the BIDS format and facilitating their analysis. Journal of Open Source Software, 2019, 4, 1896.	4.6	65
13	Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Frontiers in Integrative Neuroscience, 2014, 8, 66.	2.1	172
14	Causal Frequency-Specific Contributions of Frontal Spatiotemporal Patterns Induced by Non-Invasive Neurostimulation to Human Visual Performance. Journal of Neuroscience, 2013, 33, 5000-5005.	3.6	84