
Ilka Wallis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1273240/publications.pdf Version: 2024-02-01

Ιικλ Μλιτις

#	Article	IF	CITATIONS
1	Facilitating Open Pit Mine Closure with Managed Aquifer Recharge. Ground Water, 2022, 60, 477-487.	1.3	4
2	Juncus sarophorus, a native Australian species, tolerates and accumulates PFOS, PFOA and PFHxS in a glasshouse experiment. Science of the Total Environment, 2022, 826, 154184.	8.0	9
3	Groundwater-level recovery following closure of open-pit mines. Hydrogeology Journal, 2022, 30, 1819-1832.	2.1	2
4	Catchment-scale groundwater-flow and recharge paradox revealed from base flow analysis during the Australian Millennium Drought (Mt Lofty Ranges, South Australia). Hydrogeology Journal, 2021, 29, 963-983.	2.1	3
5	Investigation into the Cause of Iron-Related Clogging of Groundwater Bores Used for Viticulture in the Limestone Coast, South Australia. Water (Switzerland), 2021, 13, 683.	2.7	4
6	Autoflocculation of microalgae, via magnesium hydroxide precipitation, in a high rate algal pond treating municipal wastewater in the South Australian Riverland. Algal Research, 2021, 59, 102418.	4.6	12
7	Spatiotemporal evolution of iron and sulfate concentrations during riverbank filtration: Field observations and reactive transport modeling. Journal of Contaminant Hydrology, 2020, 234, 103697.	3.3	8
8	The river–groundwater interface as a hotspot for arsenic release. Nature Geoscience, 2020, 13, 288-295.	12.9	104
9	Trace metal behavior during in-situ iron removal tests in Leuven, Belgium. Science of the Total Environment, 2019, 648, 367-376.	8.0	5
10	Salinity balance and historical flushing quantified in a high-rainfall catchment (Mount Lofty Ranges,) Tj ETQq0 0 C) rgBT /Ov 2.1	erlock 10 Tf 5
11	Advect As challenge: multidisciplinary research on groundwater arsenic dissolution, transport, and retardation under advective flow conditions. , 2019, , 29-31.		0
12	Generating false negatives and false positives for As and Mo concentrations in groundwater due to well installation. Science of the Total Environment, 2018, 631-632, 723-732.	8.0	16
13	Corrigendum to "Palaeohydrogeology and Transport Parameters Derived from ⁴ He and Cl Profiles in Aquitard Pore Waters in a Large Multilayer Aquifer System, Central Australiaâ€: Geofluids, 2018, 2018, 1-1.	0.7	2
14	Southern South Australian groundwater microbe diversity. FEMS Microbiology Ecology, 2018, 94, .	2.7	9

15	A groundwater salinity hotspot and its connection to an intermittent stream identified by environmental tracers (Mt Lofty Ranges, South Australia). Hydrogeology Journal, 2017, 25, 2435-2451.	2.1	4
16	Palaeohydrogeology and Transport Parameters Derived from ⁴ He and Cl Profiles in Aquitard Pore Waters in a Large Multilayer Aquifer System, Central Australia. Geofluids, 2017, 2017, 1-17.	0.7	7
17	Reactive transport modelling of groundwater-bentonite interaction: Effects on exchangeable cations in an alternative buffer material in-situ test. Applied Geochemistry, 2016, 73, 59-69.	3.0	11
18	Using predictive uncertainty analysis to optimise tracer test design and data acquisition. Journal of Hydrology, 2014, 515, 191-204.	5.4	13

2

Ilka Wallis

#	Article	IF	CITATIONS
19	Numerical modeling of arsenic mobility. Arsenic in the Environment, 2014, , 35-52.	0.0	0
20	Simulating MODFLOWâ€Based Reactive Transport Under Radially Symmetric Flow Conditions. Ground Water, 2013, 51, 398-413.	1.3	12
21	Hydrogeochemical transport modeling of the infiltration of tertiary treated wastewater in a dune area, Belgium. Hydrogeology Journal, 2013, 21, 1307-1321.	2.1	14
22	Process-Based Reactive Transport Model To Quantify Arsenic Mobility during Aquifer Storage and Recovery of Potable Water. Environmental Science & amp; Technology, 2011, 45, 6924-6931.	10.0	90
23	Evaluation of Conceptual and Numerical Models for Arsenic Mobilization and Attenuation during Managed Aquifer Recharge. Environmental Science & Technology, 2010, 44, 5035-5041.	10.0	63
24	Using environmental tracers to assess the extent of river–groundwater interaction in a quarried area of the English Chalk. Applied Geochemistry, 2010, 25, 923-932.	3.0	18
25	Assessing the extent of induced leakage to an urban aquifer using environmental tracers: an example from Bishkek, capital of Kyrgyzstan, Central Asia. Hydrogeology Journal, 2006, 14, 225-243.	2.1	37
26	Effectiveness of the Nitrate Sensitive Areas Scheme in reducing groundwater concentrations in England. Quarterly Journal of Engineering Geology and Hydrogeology, 2005, 38, 117-127.	1.4	28
27	Structural influence on plume migration from a tailings dam in the West Rand, Republic of South Africa. Geological Society Special Publication, 2002, 198, 337-346.	1.3	4