$\tilde{D}\tilde{D} \gg \tilde{D} \mu \tilde{D}^o \tilde{N} \tilde{D}^o \tilde{D}^{1/2} \tilde{D}' \tilde{N} \in \tilde{D} \tilde{N} \tilde{D}^3 \tilde{N} \tilde{D}^{1/2} \tilde{D}^{3/4} \tilde{D}^{1/2} \tilde{D$

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1272882/publications.pdf

Version: 2024-02-01

1872680 1937685 11 38 4 6 citations h-index g-index papers 11 11 11 27 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Acid-base and sorption properties of amorphous titanium phosphate. Radiochemistry, 2013, 55, 392-398.	0.7	8
2	Performance properties of titanium phosphate ion exchanger utilized for commercial production in liquid radioactive waste treatment systems. Radiochemistry, 2012, 54, 549-557.	0.7	6
3	Composition of ion-exchange materials based on titanium phosphate. Russian Journal of Applied Chemistry, 2006, 79, 1793-1797.	0.5	5
4	Potential Use of Carboxyl Ion-Exchangers for Operational Optimization of Special Water Purification Systems in NPP with VVER. Atomic Energy, 2015, 118, 285-289.	0.4	4
5	Role of simple anionic ligands in deep decontamination of liquid radioactive waste. Radiochemistry, 2016, 58, 311-316.	0.7	3
6	Prospects for Using Weakly Dissociated Ion Exchange Resins in Special Water Treatment Systems at VVER-Based Nuclear Power Plants for Reducing the Volume of Radioactive Waste Generated. Thermal Engineering (English Translation of Teploenergetika), 2018, 65, 212-216.	0.9	3
7	Dialysis Membranes Based on Microfiltration Elements for Separating the Components of Npp Radioactive Wastewater Via Precipitation. Atomic Energy, 2020, 127, 288-295.	0.4	3
8	Motivation and Possibility for Reducing the Volume of Radwastes. Atomic Energy, 2014, 115, 386-390.	0.4	2
9	Osmotic Effects during Filtration through Composite Membranes Formed in Water Treatment Processes. Petroleum Chemistry, 2018, 58, 490-495.	1.4	2
10	Incentives and Prerequisites for Modernizing NPP Radwaste Management. Atomic Energy, 2017, 121, 350-354.	0.4	1
11	Radioactive waste management in PWR technology: some technical solutions for liquid radioactive media processing systems of the "nuclear islandâ€₊ Journal of Physics: Conference Series, 2020, 1689, 012009.	0.4	1