Filomeno Martina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1272530/publications.pdf

Version: 2024-02-01

214721 172386 6,308 48 29 47 citations h-index g-index papers 49 49 49 3646 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Compression Behaviour of Wire + Arc Additive Manufactured Structures. Metals, 2021, 11, 877.	1.0	7
2	Effect of deposition strategies on fatigue crack growth behaviour of wire + arc additive manufactured titanium alloy Ti–6Al–4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 814, 141194.	2.6	33
3	High Cycle Fatigue and Fatigue Crack Growth Rate in Additive Manufactured Titanium Alloys. Lecture Notes in Mechanical Engineering, 2020, , 31-42.	0.3	2
4	Wire plus arc additive manufactured functional steel surfaces enhanced by rolling. International Journal of Fatigue, 2020, 130, 105237.	2.8	48
5	On the observation of annealing twins during simulating β-grain refinement in Ti–6Al–4V high deposition rate AM with in-process deformation. Acta Materialia, 2020, 186, 229-241.	3.8	33
6	Grain refinement in an unalloyed tantalum structure by combining Wire+Arc additive manufacturing and vertical cold rolling. Additive Manufacturing, 2020, 32, 101009.	1.7	28
7	Quantification of strain fields and grain refinement in Ti-6Al-4V inter-pass rolled wire-arc AM by EBSD misorientation analysis. Materials Characterization, 2020, 170, 110673.	1.9	18
8	Microscopic strain localisation in WAAM Ti-6Al-4V during uniaxial tensile loading. MATEC Web of Conferences, 2020, 321, 03008.	0.1	2
9	A comparison framework to support the selection of the best additive manufacturing process for specific aerospace applications. International Journal of Rapid Manufacturing, 2020, 9, 194.	0.5	31
10	Multi-criteria environmental and economic impact assessment of wire arc additive manufacturing. CIRP Annals - Manufacturing Technology, 2020, 69, 37-40.	1.7	55
11	Mechanical Properties Enhancement of Additive Manufactured Ti-6Al-4V by Machine Hammer Peening. Lecture Notes in Mechanical Engineering, 2020, , 121-132.	0.3	17
12	The effect of loading direction on strain localisation in wire arc additively manufactured Ti–6Al–4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 788, 139608.	2.6	20
13	A comparison framework to support the selection of the best additive manufacturing process for specific aerospace applications. International Journal of Rapid Manufacturing, 2020, 9, 1.	0.5	8
14	Mechanical performance and microstructural characterisation of titanium alloy-alloy composites built by wire-arc additive manufacture. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 765, 138289.	2.6	26
15	Effect of shielding gas composition and welding speed on autogenous welds of unalloyed tungsten plates. International Journal of Refractory Metals and Hard Materials, 2019, 85, 105043.	1.7	5
16	Numerical study of rolling process on the plastic strain distribution in wire + arc additive manufactured Ti-6Al-4V. AIP Conference Proceedings, 2019, , .	0.3	0
17	Numerical Investigation of the Effect of Rolling on the Localized Stress and Strain Induction for Wire + Arc Additive Manufactured Structures. Journal of Materials Engineering and Performance, 2019, 28, 4931-4942.	1.2	30
18	Metal additive manufacturing in the commercial aviation industry: A review. Journal of Manufacturing Systems, 2019, 53, 124-149.	7.6	344

#	Article	IF	Citations
19	Analysis of fracture toughness properties of wire + arc additive manufactured high strength low alloy structural steel components. Materials Science & Droperties, Microstructure and Processing, 2019, 765, 138285.	2.6	67
20	On the origin of microstructural banding in Ti-6Al4V wire-arc based high deposition rate additive manufacturing. Acta Materialia, 2019, 166, 306-323.	3.8	181
21	Spatially resolved acoustic spectroscopy for integrity assessment in wire–arc additive manufacturing. Additive Manufacturing, 2019, 28, 236-251.	1.7	10
22	Microstructure, hardness and mechanical properties of two different unalloyed tantalum wires deposited via wire + arc additive manufacture. International Journal of Refractory Metals and Hard Materials, 2019, 83, 104974.	1.7	30
23	A modular path planning solution for Wire + Arc Additive Manufacturing. Robotics and Computer-Integrated Manufacturing, 2019, 60, 1-11.	6.1	98
24	Development of Wire + Arc additive manufacture for the production of large-scale unalloyed tungsten components. International Journal of Refractory Metals and Hard Materials, 2019, 82, 329-335.	1.7	51
25	Laser stabilization of GMAW additive manufacturing of Ti-6Al-4V components. Journal of Materials Processing Technology, 2019, 272, 1-8.	3.1	40
26	Microstructure and thermal properties of unalloyed tungsten deposited by WireÂ+ Arc Additive Manufacture. Journal of Nuclear Materials, 2019, 522, 45-53.	1.3	30
27	Functionally graded structures of refractory metals by wire arc additive manufacturing. Science and Technology of Welding and Joining, 2019, 24, 495-503.	1.5	51
28	Tandem metal inert gas process for high productivity wire arc additive manufacturing in stainless steel. Additive Manufacturing, 2019, 25, 545-550.	1.7	89
29	Improving mechanical properties of wire plus arc additively manufactured maraging steel through plastic deformation enhanced aging response. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 747, 111-118.	2.6	35
30	Analytical process model for wire + arc additive manufacturing. Additive Manufacturing, 2018, 21, 651-657.	1.7	61
31	Microstructural evolution and mechanical properties of maraging steel produced by wire + arc additive manufacture process. Materials Characterization, 2018, 143, 152-162.	1.9	137
32	A System Approach for Modelling Additive Manufacturing in Defence Acquisition Programs. Procedia CIRP, 2018, 67, 209-214.	1.0	10
33	Fracture toughness and fatigue crack growth rate properties in wire + arc additive manufactured Tiâ€6Alâ€4V. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40, 790-803.	1.7	80
34	Design for Wire + Arc Additive Manufacture: design rules and build orientation selection. Journal of Engineering Design, 2017, 28, 568-598.	1.1	91
35	A review of Additive Manufacturing technology and Cost Estimation techniques for the defence sector. CIRP Journal of Manufacturing Science and Technology, 2017, 19, 117-128.	2.3	90
36	Application of bulk deformation methods for microstructural and material property improvement and residual stress and distortion control in additively manufactured components. Scripta Materialia, 2017, 135, 111-118.	2.6	141

#	Article	IF	CITATIONS
37	Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP Annals - Manufacturing Technology, 2016, 65, 737-760.	1.7	1,291
38	Defining Next-Generation Additive Manufacturing Applications for the Ministry of Defence (MoD). Procedia CIRP, 2016, 55, 302-307.	1.0	17
39	Residual stress of as-deposited and rolled wire+arc additive manufacturing Ti–6Al–4V components. Materials Science and Technology, 2016, 32, 1439-1448.	0.8	160
40	The effectiveness of combining rolling deformation with Wire–Arc Additive Manufacture on β-grain refinement and texture modification in Ti–6Al–4V. Materials Characterization, 2016, 114, 103-114.	1.9	245
41	Wire + Arc Additive Manufacturing. Materials Science and Technology, 2016, 32, 641-647.	0.8	1,107
42	A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed Ti–6Al–4V components. Materials and Design, 2016, 89, 559-567.	3.3	296
43	Microstructure of Interpass Rolled Wire + Arc Additive Manufacturing Ti-6Al-4V Components. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 6103-6118.	1.1	218
44	Development of a laminar flow local shielding device for wire + arc additive manufacture. Journal of Materials Processing Technology, 2015, 226, 99-105.	3.1	73
45	Designing a WAAM Based Manufacturing System for Defence Applications. Procedia CIRP, 2015, 37, 48-53.	1.0	82
46	Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling. Journal of Materials Processing Technology, 2013, 213, 1782-1791.	3.1	336
47	Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti–6Al–4V. Journal of Materials Processing Technology, 2012, 212, 1377-1386.	3.1	428
48	High Pressure Interpass Rolling of Wire + Arc Additively Manufactured Titanium Components. Advanced Materials Research, 0, 996, 694-700.	0.3	55