Shangyun Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1271916/publications.pdf

Version: 2024-02-01

58	1,766	24 h-index	40
papers	citations		g-index
58	58	58	2512 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Trimethylamine Nâ€oxide exacerbates acetaminophenâ€induced liver injury by interfering with macrophageâ€mediated liver regeneration. Journal of Cellular Physiology, 2022, 237, 897-910.	2.0	5
2	Combination of oxytetracycline and quinocetone synergistically induces hepatotoxicity via generation of reactive oxygen species and activation of mitochondrial pathway. Toxicology Mechanisms and Methods, 2022, 32, 49-57.	1.3	5
3	Involvement of PD-L1-mediated tumor-intrinsic signaling and immune suppression in tumorigenic effect of α-tocopherol. Carcinogenesis, 2022, 43, 243-253.	1.3	2
4	Glucose Limitation Sensitizes Cancer Cells to Selenite-Induced Cytotoxicity via SLC7A11-Mediated Redox Collapse. Cancers, 2022, 14, 345.	1.7	5
5	Inhibition of PD-L1-mediated tumor-promoting signaling is involved in the anti-cancer activity of \hat{l}^2 -tocotrienol. Biochemical and Biophysical Research Communications, 2022, 617, 33-40.	1.0	6
6	Patulin disrupts SLC7A11-cystine-cysteine-GSH antioxidant system and promotes renal cell ferroptosis both in vitro and in vivo. Food and Chemical Toxicology, 2022, 166, 113255.	1.8	19
7	The combination of T-2 toxin and acrylamide synergistically induces hepatotoxicity and nephrotoxicity via the activation of oxidative stress and the mitochondrial pathway. Toxicon, 2021, 189, 65-72.	0.8	15
8	Combining Patulin with Cadmium Induces Enhanced Hepatotoxicity and Nephrotoxicity In Vitro and In Vivo. Toxins, 2021, 13, 221.	1.5	8
9	PDâ€L1 positively regulates MET phosphorylation through inhibiting PTP1B. Cancer Science, 2021, 112, 1878-1887.	1.7	6
10	Food Sources of Selenium and Its Relationship with Chronic Diseases. Nutrients, 2021, 13, 1739.	1.7	52
11	Mechanisms of Physical Fatigue and its Applications in Nutritional Interventions. Journal of Agricultural and Food Chemistry, 2021, 69, 6755-6768.	2.4	15
12	Combination of Palmitic Acid and Methylseleninic Acid Induces Mitochondria-Dependent Apoptosis via Attenuation of the IRE1 \hat{l} ± Arm and Enhancement of CHOP in Hepatoma. ACS Omega, 2021, 6, 15708-15715.	1.6	5
13	Methylseleninic acid overcomes programmed deathâ€ligand 1â€mediated resistance of prostate cancer and lung cancer. Molecular Carcinogenesis, 2021, 60, 746-757.	1.3	9
14	Enhancement of TEX264-Mediated ER-Phagy Contributes to the Therapeutic Effect of Glycycoumarin against APA Hepatotoxicity in Mice. Biomedicines, 2021, 9, 939.	1.4	5
15	Glycyrol alleviates the combined toxicity of fumonisin B1 and cadmium in vitro and in vivo. Toxicon, 2021, 200, 165-172.	0.8	2
16	18βâ€glycyrrhetinic acid improves highâ€intensity exercise performance by promoting glucoseâ€dependent energy production and inhibiting oxidative stress in mice. Phytotherapy Research, 2021, 35, 6932-6943.	2.8	5
17	Role of Ferroptosis in Non-Alcoholic Fatty Liver Disease and Its Implications for Therapeutic Strategies. Biomedicines, 2021, 9, 1660.	1.4	32
18	Glycyrol Alone or in Combination with Gefitinib Is Effective against Gefitinib-Resistant HCC827GR Lung Cancer Cells. Applied Sciences (Switzerland), 2021, 11, 10526.	1.3	O

#	Article	IF	Citations
19	A Multi-Ingredient Formula Ameliorates Exercise-Induced Fatigue by Changing Metabolic Pathways and Increasing Antioxidant Capacity in Mice. Foods, 2021, 10, 3120.	1.9	6
20	Synergistic anti-colon cancer effect of glycyrol and butyrate is associated with the enhanced activation of caspase-3 and structural features of glycyrol. Food and Chemical Toxicology, 2020, 136, 110952.	1.8	16
21	Protective effects of glycycoumarin on liver diseases. Phytotherapy Research, 2020, 34, 1191-1197.	2.8	12
22	Functional Role of p53 in the Regulation of Chemical-Induced Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-10.	1.9	22
23	Hepatic PLIN5 signals via SIRT1 to promote autophagy and prevent inflammation during fasting. Journal of Lipid Research, 2020, 61, 338-350.	2.0	35
24	Activation of the IRE1 \hat{l} \pm Arm, but not the PERK Arm, of the Unfolded Protein Response Contributes to Fumonisin B1-Induced Hepatotoxicity. Toxins, 2020, 12, 55.	1.5	13
25	Involvement of activation of PLIN5-Sirt1 axis in protective effect of glycycoumarin on hepatic lipotoxicity. Biochemical and Biophysical Research Communications, 2020, 528, 7-13.	1.0	4
26	Combined CDK4/6 and Pan-mTOR Inhibition Is Synergistic Against Intrahepatic Cholangiocarcinoma. Clinical Cancer Research, 2019, 25, 403-413.	3.2	56
27	Glycyrol exerts potent therapeutic effect on lung cancer via directly inactivating T-LAK cell-originated protein kinase. Pharmacological Research, 2019, 147, 104366.	3.1	17
28	Targeting the COX2/MET/TOPK signaling axis induces apoptosis in gefitinib-resistant NSCLC cells. Cell Death and Disease, 2019, 10, 777.	2.7	26
29	3′â€Desmethylarctigenin induces G2/M cell cycle arrest and apoptosis through reactive oxygen species generation in hepatocarcinoma cells. Phytotherapy Research, 2019, 33, 3218-3227.	2.8	1
30	Inorganic Selenium Induces Nonapoptotic Programmed Cell Death in PC-3 Prostate Cancer Cells Associated with Inhibition of Glycolysis. Journal of Agricultural and Food Chemistry, 2019, 67, 10637-10645.	2.4	19
31	Combination of Patulin and Chlorpyrifos Synergistically Induces Hepatotoxicity via Inhibition of Catalase Activity and Generation of Reactive Oxygen Species. Journal of Agricultural and Food Chemistry, 2019, 67, 11474-11480.	2.4	15
32	Molecular mechanisms of fumonisin B1-induced toxicities and its applications in the mechanism-based interventions. Toxicon, 2019, 167, 1-5.	0.8	58
33	The functional role of Bax/Bak in palmitate-induced lipoapoptosis. Food and Chemical Toxicology, 2019, 123, 268-274.	1.8	11
34	Hepatic perilipin 5 promotes lipophagy and alters lipid droplet and mitochondrial dynamics. FASEB Journal, 2019, 33, 490.19.	0.2	1
35	Role of p62 in the regulation of cell death induction. Apoptosis: an International Journal on Programmed Cell Death, 2018, 23, 187-193.	2.2	36
36	Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biology, 2018, 17, 274-283.	3.9	355

#	Article	IF	Citations
37	Mechanisms of cell death induction by food-borne mycotoxins. Critical Reviews in Food Science and Nutrition, 2018, 58, 1406-1417.	5.4	19
38	Role of P53-Senescence Induction in Suppression of LNCaP Prostate Cancer Growth by Cardiotonic Compound Bufalin. Molecular Cancer Therapeutics, 2018, 17, 2341-2352.	1.9	32
39	Glycycoumarin protects mice against acetaminophenâ€induced liver injury predominantly <i>via</i> activating sustained autophagy. British Journal of Pharmacology, 2018, 175, 3747-3757.	2.7	48
40	Glycycoumarin Sensitizes Liver Cancer Cells to ABT-737 by Targeting De Novo Lipogenesis and TOPK-Survivin Axis. Nutrients, 2018, 10, 353.	1.7	13
41	Protective role of p53 in acetaminophen hepatotoxicity. Free Radical Biology and Medicine, 2017, 106, 111-117.	1.3	37
42	Methylseleninic Acid Prevents Patulin-Induced Hepatotoxicity and Nephrotoxicity via the Inhibition of Oxidative Stress and Inactivation of p53 and MAPKs. Journal of Agricultural and Food Chemistry, 2017, 65, 5299-5305.	2.4	36
43	Antcin H Protects Against Acute Liver Injury Through Disruption of the Interaction of c-Jun-N-Terminal Kinase with Mitochondria. Antioxidants and Redox Signaling, 2017, 26, 207-220.	2.5	38
44	p53 activation contributes to patulin-induced nephrotoxicity via modulation of reactive oxygen species generation. Scientific Reports, 2016, 6, 24455.	1.6	29
45	Glycycoumarin inhibits hepatocyte lipoapoptosis through activation of autophagy and inhibition of ER stress/GSK-3-mediated mitochondrial pathway. Scientific Reports, 2016, 6, 38138.	1.6	37
46	Involvement of ROS-p38-H2AX axis in novel curcumin analogues-induced apoptosis in breast cancer cells. Molecular Carcinogenesis, 2016, 55, 323-334.	1.3	16
47	High throughput sequencing analysis reveals amelioration of intestinal dysbiosis by squid ink polysaccharide. Journal of Functional Foods, 2016, 20, 506-515.	1.6	44
48	p21 induction plays a dual role in anti-cancer activity of ursolic acid. Experimental Biology and Medicine, 2016, 241, 501-508.	1.1	20
49	Fumonisin B1 induces autophagic cell death via activation of ERN1-MAPK8/9/10 pathway in monkey kidney MARC-145 cells. Archives of Toxicology, 2016, 90, 985-996.	1.9	47
50	Glycycoumarin exerts anti-liver cancer activity by directly targeting T-LAK cell-originated protein kinase. Oncotarget, 2016, 7, 65732-65743.	0.8	26
51	Vitamin B ₂ Sensitizes Cancer Cells to Vitamin-C-Induced Cell Death via Modulation of Akt and Bad Phosphorylation. Journal of Agricultural and Food Chemistry, 2015, 63, 6739-6748.	2.4	9
52	Glycycoumarin ameliorates alcohol-induced hepatotoxicity via activation of Nrf2 and autophagy. Free Radical Biology and Medicine, 2015, 89, 135-146.	1.3	59
53	Involvement of autophagy induction in penta-1,2,3,4,6-O-galloyl- \hat{l}^2 -D-glucose-induced senescence-like growth arrest in human cancer cells. Autophagy, 2014, 10, 296-310.	4.3	34
54	A novel microsphere-based fluorescence immunochromatographic assay for monitoring cefalexin residues in plasma, milk, muscle and liver. Analytical Methods, 2013, 5, 6441.	1.3	8

#	Article	IF	CITATIONS
55	Pentagalloylglucose induces autophagy and caspase-independent programmed deaths in human PC-3 and mouse TRAMP-C2 prostate cancer cells. Molecular Cancer Therapeutics, 2009, 8, 2833-2843.	1.9	45
56	Penta-1,2,3,4,6- <i>O</i> -galloyl- \hat{l}^2 - <scp>d</scp> -glucose induces p53 and inhibits STAT3 in prostate cancer cells <i>in vitro</i> -and suppresses prostate xenograft tumor growth <i>in vivo</i> -Molecular Cancer Therapeutics, 2008, 7, 2681-2691.	1.9	99
57	Differential involvement of reactive oxygen species in apoptosis induced by two classes of selenium compounds in human prostate cancer cells. International Journal of Cancer, 2007, 120, 2034-2043.	2.3	100
58	Selenite-induced p53 Ser-15 phosphorylation and caspase-mediated apoptosis in LNCaP human prostate cancer cells. Molecular Cancer Therapeutics, 2004, 3, 877-84.	1.9	71