
Chiara Liliana Boldrini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1271845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep Eutectic Solvents in Solar Energy Technologies. Molecules, 2022, 27, 709.	3.8	23
2	Multibranched Calix[4]areneâ€Based Sensitizers for Efficient Photocatalytic Hydrogen Production. European Journal of Organic Chemistry, 2021, 2021, 284-288.	2.4	7
3	Dye–catalyst dyads for photoelectrochemical water oxidation based on metal-free sensitizers. RSC Advances, 2021, 11, 5311-5319.	3.6	4
4	Calix[4]arene-based molecular photosensitizers for sustainable hydrogen production and other solar applications. Current Opinion in Green and Sustainable Chemistry, 2021, 32, 100534.	5.9	5
5	Ferrocene Derivatives Functionalized with Donor/Acceptor (Hetero)Aromatic Substituents: Tuning of Redox Properties. Energies, 2020, 13, 3937.	3.1	10
6	Ecoâ€Friendly Sugarâ€Based Natural Deep Eutectic Solvents as Effective Electrolyte Solutions for Dyeâ€Sensitized Solar Cells. ChemElectroChem, 2020, 7, 1707-1712.	3.4	23
7	Molecular Organic Sensitizers for Photoelectrochemical Water Splitting. European Journal of Inorganic Chemistry, 2020, 2020, 978-999.	2.0	29
8	Dye-sensitized photocatalytic and photoelectrochemical hydrogen production through water splitting. Rendiconti Lincei, 2019, 30, 469-483.	2.2	8
9	Designing Eco‣ustainable Dye‣ensitized Solar Cells by the Use of a Mentholâ€Based Hydrophobic Eutectic Solvent as an Effective Electrolyte Medium. Chemistry - A European Journal, 2018, 24, 17656-17659.	3.3	47
10	Organic Sensitizers for Photoanode Water Splitting in Dye‧ensitized Photoelectrochemical Cells. ChemElectroChem, 2018, 5, 2395-2402.	3.4	10
11	A D-ï€-A organic dye – Reduced graphene oxide covalent dyad as a new concept photosensitizer for light harvesting applications. Carbon, 2017, 115, 746-753.	10.3	25
12	Hot Electron Collection on Brookite Nanorods Lateral Facets for Plasmon-Enhanced Water Oxidation. ACS Catalysis, 2017, 7, 1270-1278.	11.2	53
13	Dyeâ€5ensitized Solar Cells that use an Aqueous Choline Chlorideâ€Based Deep Eutectic Solvent as Effective Electrolyte Solution. Energy Technology, 2017, 5, 345-353.	3.8	80
14	â€~Donor-free' oligo(3-hexylthiophene) dyes for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 2509-2516.	10.3	28
15	Introducing eco-friendly hydrophilic and hydrophobic deep eutectic solvent electrolyte solutions for dye-sensitized solar cells. , 0, , .		0