Andrew D Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1271789/publications.pdf

Version: 2024-02-01

47 papers 1,348 citations

³⁹⁴⁴²¹ 19 h-index 36 g-index

48 all docs 48 docs citations

48 times ranked 1521 citing authors

#	Article	IF	Citations
1	Development of a cardiovascular magnetic resonanceâ€compatible large animal isolated heart model for direct comparison of beating and arrested hearts. NMR in Biomedicine, 2022, , e4692.	2.8	2
2	Validation of cardiac diffusion tensor imaging sequences: A multicentre test–retest phantom study. NMR in Biomedicine, 2022, 35, e4685.	2.8	2
3	Reproducibility of global and segmental myocardial strain using cine DENSE at 3ÂT: a multicenter cardiovascular magnetic resonance study in healthy subjects and patients withÂheart disease. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 23.	3.3	13
4	Accelerating Cardiac Diffusion Tensor Imaging With a Uâ€Net Based Model: Toward Single Breathâ€Hold. Journal of Magnetic Resonance Imaging, 2022, 56, 1691-1704.	3.4	7
5	Random walk diffusion simulations in semi-permeable layered media with varying diffusivity. Scientific Reports, 2022, 12, .	3.3	11
6	Fully-automated global and segmental strain analysis of DENSE cardiovascular magnetic resonance using deep learning for segmentation and phase unwrapping. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 20.	3.3	21
7	Motionâ€Induced Signal Loss in In Vivo Cardiac Diffusionâ€Weighted Imaging. Journal of Magnetic Resonance Imaging, 2020, 51, 319-320.	3.4	7
8	Cardiac Diffusion: Technique and Practical Applications. Journal of Magnetic Resonance Imaging, 2020, 52, 348-368.	3.4	27
9	Diffusion Tensor Cardiovascular Magnetic Resonance Imaging. JACC: Cardiovascular Imaging, 2020, 13, 1235-1255.	5.3	45
10	Diffusion tensor cardiovascular magnetic resonance in hypertrophic cardiomyopathy: a comparison of motion-compensated spin echo and stimulated echo techniques. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2020, 33, 331-342.	2.0	2
11	Diffusion Tensor Cardiovascular Magnetic Resonance in Cardiac Amyloidosis. Circulation: Cardiovascular Imaging, 2020, 13, e009901.	2.6	26
12	Automating in vivo cardiac diffusion tensor postprocessing with deep learning–based segmentation. Magnetic Resonance in Medicine, 2020, 84, 2801-2814.	3.0	15
13	Predictors of left ventricular remodelling in patients with dilated cardiomyopathy – a cardiovascular magnetic resonance study. European Journal of Heart Failure, 2020, 22, 1160-1170.	7.1	27
14	Novel insights into inâ€vivo diffusion tensor cardiovascular magnetic resonance using computational modelling and a histologyâ€based virtual microstructure. Magnetic Resonance in Medicine, 2019, 81, 2759-2773.	3.0	18
15	The feasibility of a novel limited field of view spiral cine DENSE sequence to assess myocardial strain in dilated cardiomyopathy. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2019, 32, 317-329.	2.0	6
16	High resolution inâ€vivo DT MR using an interleaved variable density spiral STEAM sequence. Magnetic Resonance in Medicine, 2019, 81, 1580-1594.	3.0	6
17	Deranged Myocyte Microstructure in Situs Inversus Totalis Demonstrated by Diffusion Tensor Cardiac Magnetic Resonance. JACC: Cardiovascular Imaging, 2018, 11, 1360-1362.	5.3	15
18	Diffusion tensor cardiovascular magnetic resonance with a spiral trajectory: An in vivo comparison of echo planar and spiral stimulated echo sequences. Magnetic Resonance in Medicine, 2018, 80, 648-654.	3.0	11

#	Article	IF	CITATIONS
19	Diffusion Tensor Cardiovascular Magnetic Resonance of Microstructural Recovery in Dilated Cardiomyopathy. JACC: Cardiovascular Imaging, 2018, 11, 1548-1550.	5. 3	18
20	Evaluation of the impact of strain correction on the orientation of cardiac diffusion tensors with in vivo and ex vivo porcine hearts. Magnetic Resonance in Medicine, 2018, 79, 2205-2215.	3.0	18
21	An in-vivo comparison of stimulated-echo and motion compensated spin-echo sequences for 3ÂT diffusion tensor cardiovascular magnetic resonance at multiple cardiac phases. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 1.	3.3	78
22	Stochastic Deep Compressive Sensing for the Reconstruction of Diffusion Tensor Cardiac MRI. Lecture Notes in Computer Science, 2018, , 295-303.	1.3	22
23	2â€Assessment of the microstructure in recovered dilated cardiomyopathy with diffusion tensor cardiovascular magnetic resonance. , 2018, , .		0
24	Assessment of Myocardial Microstructural Dynamics by InÂVivo Diffusion Tensor Cardiac Magnetic Resonance. Journal of the American College of Cardiology, 2017, 69, 661-676.	2.8	171
25	Relationship between cardiac diffusion tensor imaging parameters and anthropometrics in healthy volunteers. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 2.	3.3	19
26	The effects of noise in cardiac diffusion tensor imaging and the benefits of averaging complex data. NMR in Biomedicine, 2016, 29, 588-599.	2.8	32
27	134â€Non-invasive Interrogation of Myocardial Disarray in Hypertrophic Cardiomyopathy. Heart, 2016, 102, A96.1-A96.	2.9	0
28	Accelerating cine DENSE using a zonal excitation. Journal of Cardiovascular Magnetic Resonance, 2016, 18, O50.	3.3	7
29	Intercentre reproducibility of second eigenvector orientation in cardiac diffusion tensor imaging. Journal of Cardiovascular Magnetic Resonance, 2016, 18, P35.	3. 3	0
30	Can we predict the diffusion "sweet-spot―based on a standard cine?. Journal of Cardiovascular Magnetic Resonance, 2016, 18, W17.	3.3	1
31	In-vivo cardiac DTI: An initial comparison of M012 compensated spin-echo and STEAM. Journal of Cardiovascular Magnetic Resonance, 2016, 18, W19.	3.3	3
32	Optimal diffusion weighting for in vivo cardiac diffusion tensor imaging. Magnetic Resonance in Medicine, 2015, 74, 420-430.	3.0	45
33	Impact of orthodontic appliances on the quality of craniofacial anatomical magnetic resonance imaging and real-time speech imaging. European Journal of Orthodontics, 2015, 37, 610-617.	2.4	27
34	Heterogeneity of Fractional Anisotropy and Mean Diffusivity Measurements by In Vivo Diffusion Tensor Imaging in Normal Human Hearts. PLoS ONE, 2015, 10, e0132360.	2.5	26
35	In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 87.	3.3	137
36	Comparison of cardiac DTI parameters between systole and diastole. Journal of Cardiovascular Magnetic Resonance, 2014, 16, P39.	3.3	4

#	Article	IF	CITATIONS
37	Aberrant myocardial sheetlet mobility in hypertrophic cardiomyopathy detected using in vivo cardiovascular magnetic resonance diffusion tensor imaging. Journal of Cardiovascular Magnetic Resonance, 2014, 16, P338.	3.3	5
38	Intercentre reproducibility of cardiac apparent diffusion coefficient and fractional anisotropy in healthy volunteers. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 31.	3.3	33
39	Speech MRI: Morphology and function. Physica Medica, 2014, 30, 604-618.	0.7	68
40	Adaptive averaging applied to dynamic imaging of the soft palate. Magnetic Resonance in Medicine, 2013, 70, 865-874.	3.0	15
41	<i>In vitro</i> and <i>in vivo</i> repeatability of abdominal diffusion-weighted MRI. British Journal of Radiology, 2012, 85, 1507-1512.	2.2	58
42	Towards clinical assessment of velopharyngeal closure using MRI: evaluation of real-time MRI sequences at 1.5 and 3 T. British Journal of Radiology, 2012, 85, e1083-e1092.	2.2	35
43	Reproducibility of in-vivo diffusion tensor cardiovascular magnetic resonance in hypertrophic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 86.	3.3	78
44	Beat-to-beat respiratory motion correction with near 100% efficiency: a quantitative assessment using high-resolution coronary artery imaging. Magnetic Resonance Imaging, 2011, 29, 568-578.	1.8	26
45	Highâ€resolution 3D coronary vessel wall imaging with near 100% respiratory efficiency using epicardial fat tracking: Reproducibility and comparison with standard methods. Journal of Magnetic Resonance Imaging, 2011, 33, 77-86.	3.4	12
46	Noninvasive detection of coronary artery wall thickening with age in healthy subjects using high resolution MRI with beatâ€ŧoâ€beat respiratory motion correction. Journal of Magnetic Resonance lmaging, 2011, 34, 824-830.	3.4	6
47	Motion in Cardiovascular MR Imaging. Radiology, 2009, 250, 331-351.	7.3	140