
Paul V Ferkul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1271236/publications.pdf Version: 2024-02-01

DALII V FEDRIII

#	Article	IF	CITATIONS
1	Near-limit flame spread over a thin solid fuel in microgravity. Proceedings of the Combustion Institute, 1989, 22, 1213-1222.	0.3	87
2	Flame spread: Effects of microgravity and scale. Combustion and Flame, 2019, 199, 168-182.	2.8	58
3	Fire safety in space – beyond flammability testing of small samples. Acta Astronautica, 2015, 109, 208-216.	1.7	53
4	Pressure modeling of upward flame spread and burning rates over solids in partial gravity. Combustion and Flame, 2008, 154, 637-643.	2.8	48
5	Self induced buoyant blow off in upward flame spread on thin solid fuels. Fire Safety Journal, 2015, 71, 279-286.	1.4	43
6	Microgravity flammability boundary for PMMA rods in axial stagnation flow: Experimental results and energy balance analyses. Combustion and Flame, 2017, 180, 217-229.	2.8	43
7	Concurrent flame growth, spread, and quenching over composite fabric samples in low speed purely forced flow in microgravity. Proceedings of the Combustion Institute, 2017, 36, 2971-2978.	2.4	37
8	Opposed-flow flame spread: A comparison of microgravity and normal gravity experiments to establish the thermal regime. Fire Safety Journal, 2016, 79, 111-118.	1.4	33
9	Radiative, thermal, and kinetic regimes of opposed-flow flame spread: A comparison between experiment and theory. Proceedings of the Combustion Institute, 2017, 36, 2963-2969.	2.4	32
10	Transition from opposed flame spread to fuel regression and blow off: Effect of flow, atmosphere, and microgravity. Proceedings of the Combustion Institute, 2019, 37, 4117-4126.	2.4	30
11	The Effect of Gravity on Flame Spread over PMMA Cylinders. Scientific Reports, 2018, 8, 120.	1.6	28
12	One-sided flame spread phenomena of a thermally thin composite cotton/fiberglass fabric. Fire and Materials, 2005, 29, 27-37.	0.9	19
13	The critical flow velocity for radiative extinction in opposed-flow flame spread in a microgravity environment: A comparison of experimental, computational, and theoretical results. Combustion and Flame, 2016, 163, 472-477.	2.8	19
14	High-speed video analysis of flame oscillations along a PMMA rod after stagnation region blowoff. Proceedings of the Combustion Institute, 2019, 37, 1555-1562.	2.4	15
15	Transient flame growth and spread processes over a large solid fabric in concurrent low-speed flows in microgravity – Model versus experiment. Proceedings of the Combustion Institute, 2019, 37, 4163-4171.	2.4	14
16	Flame Growth Around a Spherical Solid Fuel in Low Speed Forced Flow in Microgravity. Fire Technology, 2020, 56, 5-32.	1.5	13
17	Flame Spread Over Ultra-thin Solids: Effect of Area Density and Concurrent-Opposed Spread Reversal Phenomenon. Fire Technology, 2020, 56, 91-111.	1.5	13
18	Concurrent-flow flame spread over thin discrete fuels in microgravity. Combustion and Flame, 2021, 226, 211-221.	2.8	13

PAUL V FERKUL

#	Article	lF	CITATIONS
19	Boundary Layer Effect on Opposed-Flow Flame Spread and Flame Length over Thin Polymethyl-Methacrylate in Microgravity. Combustion Science and Technology, 2018, 190, 535-549.	1.2	12
20	Numerical Study of the Effects of Confinement on Concurrent-Flow Flame Spread in Microgravity. Journal of Heat Transfer, 2020, 142, .	1.2	10
21	Upward flame spread in large enclosures: Flame growth and pressure rise. Proceedings of the Combustion Institute, 2015, 35, 2623-2630.	2.4	9
22	Buoyancy Effect on Downward Flame Spread Over PMMA Cylinders. Fire Technology, 2020, 56, 247-269.	1.5	9
23	Experimental study of concurrent-flow flame spread over thin solids in confined space in microgravity. Combustion and Flame, 2021, 227, 39-51.	2.8	9
24	PMMA rod stagnation region flame blowoff limits at various radii, oxygen concentrations, and mixed stretch rates. Proceedings of the Combustion Institute, 2019, 37, 4001-4008.	2.4	8
25	Accessing the soot-related radiative heat feedback in a flame spreading in microgravity: optical designs and associated limitations. Proceedings of the Combustion Institute, 2021, 38, 4805-4814.	2.4	8
26	Solid fuel combustion experiments in microgravity using a continuous fuel dispenser and related numerical simulations. Microgravity Science and Technology, 2004, 15, 3-12.	0.7	7
27	Downward burning of PMMA cylinders: The effect of pressure and oxygen. Proceedings of the Combustion Institute, 2021, 38, 4837-4844.	2.4	7
28	Concurrent Flame Spread Over Two-Sided Thick PMMA Slabs in Microgravity. Fire Technology, 2020, 56, 49-69.	1.5	6
29	Opposed flow burning of PMMA cylinders in normoxic atmospheres. Fire Safety Journal, 2019, 110, 102903.	1.4	4
30	Confined combustion of polymeric solid materials in microgravity. Combustion and Flame, 2021, 234, 111637.	2.8	2