Patrick J Cullen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1270950/publications.pdf

Version: 2024-02-01

289 papers 19,666 citations

9234 74 h-index 127 g-index

348 all docs

348 docs citations

348 times ranked

12781 citing authors

#	Article	IF	CITATIONS
1	Hyperspectral imaging – an emerging process analytical tool for food quality and safety control. Trends in Food Science and Technology, 2007, 18, 590-598.	7.8	1,112
2	Application of Natural Antimicrobials for Food Preservation. Journal of Agricultural and Food Chemistry, 2009, 57, 5987-6000.	2.4	618
3	Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews, 2011, 3, 159-170.	3.1	468
4	Applications of cold plasma technology in food packaging. Trends in Food Science and Technology, 2014, 35, 5-17.	7.8	393
5	Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry, 2010, 122, 500-507.	4.2	350
6	Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiology, 2014, 42, 109-116.	2.1	341
7	Effect of ultrasonic processing on food enzymes of industrial importance. Trends in Food Science and Technology, 2010, 21, 358-367.	7.8	339
8	Plasma-activated water: generation, origin of reactive species and biological applications. Journal Physics D: Applied Physics, 2020, 53, 303001.	1.3	314
9	In-package atmospheric pressure cold plasma treatment of strawberries. Journal of Food Engineering, 2014, 125, 131-138.	2.7	306
10	Mechanisms of Inactivation by High-Voltage Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus. Applied and Environmental Microbiology, 2016, 82, 450-458.	1.4	295
11	Microbiological interactions with cold plasma. Journal of Applied Microbiology, 2017, 123, 308-324.	1.4	276
12	The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends in Biotechnology, 2018, 36, 615-626.	4.9	270
13	Recent applications of Chemical Imaging to pharmaceutical process monitoring and quality control. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 10-22.	2.0	239
14	Effect of ultrasound processing on anthocyanins and color of red grape juice. Ultrasonics Sonochemistry, 2010, 17, 598-604.	3.8	236
15	In-package atmospheric pressure cold plasma treatment of cherry tomatoes. Journal of Bioscience and Bioengineering, 2014, 118, 177-182.	1.1	236
16	Effect of non thermal processing technologies on the anthocyanin content of fruit juices. Trends in Food Science and Technology, 2009, 20, 137-145.	7.8	233
17	Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocolloids, 2015, 44, 115-121.	5. 6	230
18	Effect of ultrasound processing on the quality and nutritional properties of fruit juices. Stewart Postharvest Review, 0, 4, 1-6.	0.7	225

#	Article	IF	Citations
19	Hyperspectral imaging for non-contact analysis of forensic traces. Forensic Science International, 2012, 223, 28-39.	1.3	223
20	Effects of Sonication on the Kinetics of Orange Juice Quality Parameters. Journal of Agricultural and Food Chemistry, 2008, 56, 2423-2428.	2.4	220
21	Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innovative Food Science and Emerging Technologies, 2013, 19, 153-157.	2.7	220
22	Effect of thermosonication on bioactive compounds in watermelon juice. Food Research International, 2011, 44, 1168-1173.	2.9	209
23	Atmospheric cold plasma inactivation of <i>Escherichia coli</i> in liquid media inside a sealed package. Journal of Applied Microbiology, 2013, 114, 778-787.	1.4	201
24	Application of ozone in grain processing. Journal of Cereal Science, 2010, 51, 248-255.	1.8	200
25	Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science and Emerging Technologies, 2017, 44, 235-241.	2.7	197
26	Atmospheric pressure cold plasma (ACP) treatment of whey protein isolate model solution. Innovative Food Science and Emerging Technologies, 2015, 29, 247-254.	2.7	194
27	Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review. Trends in Food Science and Technology, 2017, 65, 80-93.	7.8	177
28	Bacterial inactivation by high-voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA. Journal of Applied Microbiology, 2014, 116, 784-794.	1.4	166
29	Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innovative Food Science and Emerging Technologies, 2015, 32, 127-135.	2.7	165
30	Pesticide degradation in water using atmospheric air cold plasma. Journal of Water Process Engineering, 2016, 9, 225-232.	2.6	165
31	A hybrid plasma electrocatalytic process for sustainable ammonia production. Energy and Environmental Science, 2021, 14, 865-872.	15.6	164
32	Anthocyanin and Ascorbic Acid Degradation in Sonicated Strawberry Juice. Journal of Agricultural and Food Chemistry, 2008, 56, 10071-10077.	2.4	161
33	Applications of thermal imaging in food quality and safety assessment. Trends in Food Science and Technology, 2010, 21, 190-200.	7.8	161
34	Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli. International Journal of Food Microbiology, 2015, 210, 53-61.	2.1	153
35	Hyperspectral imaging combined with principal component analysis for bruise damage detection on white mushrooms (<i>Agaricus bisporus</i>). Journal of Chemometrics, 2008, 22, 259-267.	0.7	151
36	Cold Plasma in Modified Atmospheres for Post-harvest Treatment of Strawberries. Food and Bioprocess Technology, 2014, 7, 3045-3054.	2.6	147

#	Article	lF	CITATIONS
37	Effect of sonication on retention of anthocyanins in blackberry juice. Journal of Food Engineering, 2009, 93, 166-171.	2.7	145
38	Inactivation kinetics of pectin methylesterase and cloud retention in sonicated orange juice. Innovative Food Science and Emerging Technologies, 2009, 10, 166-171.	2.7	144
39	Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets. Innovative Food Science and Emerging Technologies, 2017, 44, 117-122.	2.7	140
40	Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. Journal of Hospital Infection, 2014, 88, 162-169.	1.4	139
41	Colour degradation and quality parameters of sonicated orange juice using response surface methodology. LWT - Food Science and Technology, 2008, 41, 1876-1883.	2.5	137
42	Perspectives from CO+RE: How COVID-19 changed our food systems and food security paradigms. Current Research in Food Science, 2020, 3, 166-172.	2.7	134
43	Achieving reactive species specificity within plasmaâ€activated water through selective generation using air spark and glow discharges. Plasma Processes and Polymers, 2017, 14, 1600207.	1.6	132
44	In-package nonthermal plasma degradation of pesticides on fresh produce. Journal of Hazardous Materials, 2014, 271, 33-40.	6.5	129
45	Recent Advances in the Application of Cold Plasma Technology in Foods. Annual Review of Food Science and Technology, 2018, 9, 609-629.	5.1	128
46	Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors. PLoS ONE, 2015, 10, e0138209.	1.1	124
47	Characterization of polylactic acid films for food packaging as affected by dielectric barrier discharge atmospheric plasma. Innovative Food Science and Emerging Technologies, 2014, 21, 107-113.	2.7	121
48	Effect of ozone processing on anthocyanins and ascorbic acid degradation of strawberry juice. Food Chemistry, 2009, 113, 1119-1126.	4.2	119
49	Post-discharge gas composition of a large-gap DBD in humid air by UV–Vis absorption spectroscopy. Plasma Sources Science and Technology, 2014, 23, 065033.	1.3	119
50	Ascorbic acid degradation kinetics of sonicated orange juice during storage and comparison with thermally pasteurised juice. LWT - Food Science and Technology, 2009, 42, 700-704.	2.5	116
51	Modelling approaches to ozone processing of liquid foods. Trends in Food Science and Technology, 2009, 20, 125-136.	7.8	115
52	Cytotoxic and mutagenic potential of solutions exposed to cold atmospheric plasma. Scientific Reports, 2016, 6, 21464.	1.6	115
53	Translation of plasma technology from the lab to the food industry. Plasma Processes and Polymers, 2018, 15, 1700085.	1.6	114
54	Stability of anthocyanins and ascorbic acid of high pressure processed blood orange juice during storage. Innovative Food Science and Emerging Technologies, 2011, 12, 93-97.	2.7	110

#	Article	IF	CITATIONS
55	Effects of ozone processing on chemical, structural and functional properties of whey protein isolate. Food Research International, 2014, 66, 365-372.	2.9	107
56	Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Research International, 2018, 106, 509-521.	2.9	104
57	Inactivation of Escherichia coli in orange juice using ozone. Innovative Food Science and Emerging Technologies, 2009, 10, 551-557.	2.7	103
58	Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food and Bioproducts Processing, 2016, 98, 181-188.	1.8	102
59	Anthocyanin and colour degradation in ozone treated blackberry juice. Innovative Food Science and Emerging Technologies, 2009, 10, 70-75.	2.7	101
60	Modelling of yeast inactivation in sonicated tomato juice. International Journal of Food Microbiology, 2010, 137, 116-120.	2.1	99
61	Stability of anthocyanins and ascorbic acid in sonicated strawberry juice during storage. European Food Research and Technology, 2009, 228, 717-724.	1.6	97
62	Kinetics of Freshly Squeezed Orange Juice Quality Changes during Ozone Processing. Journal of Agricultural and Food Chemistry, 2008, 56, 6416-6422.	2.4	95
63	Quantitative modelling approaches for ascorbic acid degradation and non-enzymatic browning of orange juice during ultrasound processing. Journal of Food Engineering, 2010, 96, 449-454.	2.7	95
64	Effect of nonthermal plasma on physico-chemical, amino acid composition, pasting and protein characteristics of short and long grain rice flour. Food Research International, 2016, 81, 50-57.	2.9	93
65	Modelling colour degradation of orange juice by ozone treatment using response surface methodology. Journal of Food Engineering, 2008, 88, 553-560.	2.7	92
66	Shelf-life extension of herring (Clupea harengus) using in-package atmospheric plasma technology. Innovative Food Science and Emerging Technologies, 2019, 53, 85-91.	2.7	90
67	The effects of acid adaptation on Escherichia coli inactivation using power ultrasound. Innovative Food Science and Emerging Technologies, 2009, 10, 486-490.	2.7	88
68	Interactions of plasma-activated water with biofilms: inactivation, dispersal effects and mechanisms of action. Npj Biofilms and Microbiomes, 2021, 7, 11.	2.9	88
69	Effects of Nonthermal Plasma Technology on Functional Food Components. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 1379-1394.	5.9	87
70	Dielectric barrier discharge atmospheric air plasma treatment of high amylose corn starch films. LWT - Food Science and Technology, 2015, 63, 1076-1082.	2.5	86
71	Physicochemical characterization of plasma-treated sodium caseinate film. Food Research International, 2014, 66, 438-444.	2.9	84
72	Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chemistry, 2017, 235, 324-333.	4.2	84

#	Article	IF	CITATIONS
73	Rheological Properties of Sonicated Guar, Xanthan and Pectin Dispersions. International Journal of Food Properties, 2010, 13, 223-233.	1.3	82
74	Ultrasound for Improved Crystallisation in Food Processing. Food Engineering Reviews, 2013, 5, 36-44.	3.1	81
75	Plasmacatalytic bubbles using CeO2 for organic pollutant degradation. Chemical Engineering Journal, 2021, 403, 126413.	6.6	79
76	Cold Plasma as an Emerging Technique for Mycotoxin-Free Food: Efficacy, Mechanisms, and Trends. Food Reviews International, 2020, 36, 193-214.	4.3	78
77	Effect of sonication on orange juice quality parameters during storage. International Journal of Food Science and Technology, 2009, 44, 586-595.	1.3	77
78	Plasma-activated water (PAW) and slightly acidic electrolyzed water (SAEW) as beef thawing media for enhancing microbiological safety. LWT - Food Science and Technology, 2020, 117, 108649.	2.5	77
79	Zein film: Effects of dielectric barrier discharge atmospheric cold plasma. Journal of Applied Polymer Science, 2014, 131, .	1.3	74
80	Non-thermal atmospheric plasma induces ROS-independent cell death in U373MG glioma cells and augments the cytotoxicity of temozolomide. British Journal of Cancer, 2016, 114, 435-443.	2.9	74
81	Effect of ozone processing on the colour, rheological properties and phenolic content of apple juice. Food Chemistry, 2011, 124, 721-726.	4.2	72
82	Developments and Challenges in Online NIR Spectroscopy for Meat Processing. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 1172-1187.	5.9	72
83	Plasma activated water and airborne ultrasound treatments for enhanced germination and growth of soybean. Innovative Food Science and Emerging Technologies, 2018, 49, 13-19.	2.7	72
84	Ozone Processing for Food Preservation: An Overview on Fruit Juice Treatments. Ozone: Science and Engineering, 2010, 32, 166-179.	1.4	71
85	Anthocyanins and color degradation in ozonated grape juice. Food and Chemical Toxicology, 2009, 47, 2824-2829.	1.8	69
86	Prediction of Polyphenol Oxidase Activity Using Visible Near-Infrared Hyperspectral Imaging on Mushroom (<i>Agaricus bisporus</i>) Caps. Journal of Agricultural and Food Chemistry, 2010, 58, 6226-6233.	2.4	69
87	Investigation of mechanisms involved in germination enhancement of wheat (<i>Triticum) Tj ETQq1 1 0.784314 and Polymers, 2019, 16, 1800148.</i>	rgBT /Ove	erlock 10 Tf 5 69
88	1H NMR spectroscopy and chemometrics evaluation of non-thermal processing of orange juice. Food Chemistry, 2016, 204, 102-107.	4.2	68
89	Efficacy of cold plasma functionalised water for improving microbiological safety of fresh produce and wash water recycling. Food Microbiology, 2019, 84, 103226.	2.1	67
90	The effects of nonthermal plasma on chemical quality of strawberries. Postharvest Biology and Technology, 2015, 110, 197-202.	2.9	66

#	Article	IF	CITATIONS
91	Plasma in Food and Agriculture. , 2016, , 1-16.		65
92	Degradation kinetics of cold plasma-treated antibiotics and their antimicrobial activity. Scientific Reports, 2019, 9, 3955.	1.6	63
93	Cold Atmospheric Plasma Induces ATP-Dependent Endocytosis of Nanoparticles and Synergistic U373MG Cancer Cell Death. Scientific Reports, 2018, 8, 5298.	1.6	62
94	Underwater microplasma bubbles for efficient and simultaneous degradation of mixed dye pollutants. Science of the Total Environment, 2021, 750, 142295.	3.9	62
95	Atmospheric cold plasma interactions with modified atmosphere packaging inducer gases for safe food preservation. Innovative Food Science and Emerging Technologies, 2016, 38, 384-392.	2.7	60
96	Fructooligosaccharides integrity after atmospheric cold plasma and high-pressure processing of a functional orange juice. Food Research International, 2017, 102, 282-290.	2.9	60
97	Investigation of a large gap cold plasma reactor for continuous in-package decontamination of fresh strawberries and spinach. Innovative Food Science and Emerging Technologies, 2020, 59, 102229.	2.7	60
98	The rise of flexible zinc-ion hybrid capacitors: advances, challenges, and outlooks. Journal of Materials Chemistry A, 2021, 9, 19054-19082.	5.2	60
99	The effect of dietary fibre inclusion on milk coagulation kinetics. Journal of Food Engineering, 2006, 77, 261-268.	2.7	59
100	Chemical Modifications of Lipids and Proteins by Nonthermal Food Processing Technologies. Journal of Agricultural and Food Chemistry, 2018, 66, 5041-5054.	2.4	57
101	Development of biopolymer-based gelatin and casein films incorporating brown seaweed Ascophyllum nodosum extract. Food Packaging and Shelf Life, 2015, 6, 68-74.	3.3	56
102	High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce. International Journal of Food Microbiology, 2019, 293, 137-145.	2.1	56
103	Inactivation of Escherichia coli by ozone treatment of apple juice at different pH levels. Food Microbiology, 2010, 27, 835-840.	2.1	55
104	Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Science of the Total Environment, 2018, 631-632, 298-307.	3.9	55
105	Low-Temperature CO ₂ Methanation: Synergistic Effects in Plasma-Ni Hybrid Catalytic System. ACS Sustainable Chemistry and Engineering, 2020, 8, 1888-1898.	3.2	54
106	Resistance of Cronobacter sakazakii in reconstituted powdered infant formula during ultrasound at controlled temperatures: A quantitative approach on microbial responses. International Journal of Food Microbiology, 2010, 142, 53-59.	2.1	52
107	Effects of cold atmospheric plasma on mackerel lipid and protein oxidation during storage. LWT - Food Science and Technology, 2020, 118, 108697.	2.5	52
108	Quantification of copper content with laser induced breakdown spectroscopy as a potential indicator of offal adulteration in beef. Talanta, 2017, 169, 123-129.	2.9	51

#	Article	IF	Citations
109	Inactivation Efficacies and Mechanisms of Gas Plasma and Plasma-Activated Water against Aspergillus flavus Spores and Biofilms: a Comparative Study. Applied and Environmental Microbiology, 2020, 86, .	1.4	50
110	Application of Supercritical Carbon Dioxide to Fruit and Vegetables: Extraction, Processing, and Preservation. Food Reviews International, 2012, 28, 253-276.	4.3	49
111	Demonstrating the Potential of Industrial Scale In-Package Atmospheric Cold Plasma for Decontamination of Cherry Tomatoes. Plasma Medicine, 2016, 6, 397-412.	0.2	49
112	Effect of cold plasma on the techno-functional properties of animal protein food ingredients. Innovative Food Science and Emerging Technologies, 2019, 58, 102205.	2.7	49
113	Spectroscopic characterization of a radio-frequency argon plasma jet discharge in ambient air. Progress of Theoretical and Experimental Physics, 2015, 2015, 63J01-0.	1.8	47
114	Controlling Microbial Safety Challenges of Meat Using High Voltage Atmospheric Cold Plasma. Frontiers in Microbiology, 2016, 7, 977.	1.5	47
115	Hyperspectral imaging for the investigation of quality deterioration in sliced mushrooms (Agaricus) Tj ETQq $1\ 1$	0.784314 1.5	rgBT/Overloc
116	Controlling Brochothrix thermosphacta as a spoilage risk using in-package atmospheric cold plasma. Food Microbiology, 2017, 66, 48-54.	2.1	46
117	Process viscometry for the food industry. Trends in Food Science and Technology, 2000, 11, 451-457.	7.8	45
118	Dielectric Barrier Discharge Atmospheric Cold Plasma for Inactivation of Pseudomonas aeruginosa Biofilms. Plasma Medicine, 2014, 4, 137-152.	0.2	45
119	Surface, Thermal and Antimicrobial Release Properties of Plasma-Treated Zein Films. Journal of Renewable Materials, 2014, 2, 77-84.	1.1	44
120	UAV-hyperspectral imaging of spectrally complex environments. International Journal of Remote Sensing, 2020, 41, 4136-4159.	1.3	44
121	Efficacy and mechanistic insights into endocrine disruptor degradation using atmospheric air plasma. Chemical Engineering Journal, 2017, 326, 700-714.	6.6	43
122	Laser-induced breakdown spectroscopy (LIBS) for rapid analysis of ash, potassium and magnesium in gluten free flours. Food Chemistry, 2018, 244, 324-330.	4.2	43
123	Generation of In-Package Cold Plasma and Efficacy Assessment Using Methylene Blue. Plasma Chemistry and Plasma Processing, 2015, 35, 1043-1056.	1.1	42
124	Degradation of cefixime antibiotic in water by atmospheric plasma bubbles: Performance, degradation pathways and toxicity evaluation. Chemical Engineering Journal, 2021, 421, 127730.	6.6	42
125	Sustainable plasma-catalytic bubbles for hydrogen peroxide synthesis. Green Chemistry, 2021, 23, 2977-2985.	4.6	42
126	Assessing the microbial oxidative stress mechanism of ozone treatment through the responses of Escherichia coli mutants. Journal of Applied Microbiology, 2011, 111, 136-144.	1.4	41

#	Article	IF	CITATIONS
127	An untargeted chemometric evaluation of plasma and ozone processing effect on volatile compounds in orange juice. Innovative Food Science and Emerging Technologies, 2019, 53, 63-69.	2.7	41
128	Safety and Quality Assessment during the Ozonation of Cloudy Apple Juice. Journal of Food Science, 2010, 75, M437-43.	1.5	40
129	Enhancement of oil spreadability of biscuit surface by nonthermal barrier discharge plasma. Innovative Food Science and Emerging Technologies, 2014, 26, 456-461.	2.7	39
130	The potential of atmospheric air cold plasma for control of bacterial contaminants relevant to cereal grain production. Innovative Food Science and Emerging Technologies, 2017, 44, 36-45.	2.7	39
131	The effect of non-thermal plasma on the lipid oxidation and microbiological quality of sushi. Innovative Food Science and Emerging Technologies, 2018, 45, 412-417.	2.7	39
132	Dissipation of Pesticide Residues on Grapes and Strawberries Using Plasma-Activated Water. Food and Bioprocess Technology, 2020, 13, 1728-1741.	2.6	39
133	Characterising the impact of postâ€treatment storage on chemistry and antimicrobial properties of plasma treated water derived from microwave and DBD sources. Plasma Processes and Polymers, 2018, 15, 1700127.	1.6	38
134	Combating Staphylococcus aureus and its methicillin resistance gene (mecA) with cold plasma. Science of the Total Environment, 2018, 645, 1287-1295.	3.9	38
135	Quantification of calcium in infant formula using laser-induced breakdown spectroscopy (LIBS), Fourier transform mid-infrared (FT-IR) and Raman spectroscopy combined with chemometrics including data fusion. Food Chemistry, 2020, 320, 126639.	4.2	38
136	Degradation kinetics of tomato juice quality parameters by ozonation. International Journal of Food Science and Technology, 2009, 44, 1199-1205.	1.3	37
137	Characterization and antimicrobial efficacy against E. coli of a helium/air plasma at atmospheric pressure created in a plastic package. Journal Physics D: Applied Physics, 2013, 46, 035401.	1.3	37
138	Surface attachment of active antimicrobial coatings onto conventional plastic-based laminates and performance assessment of these materials on the storage life of vacuum packaged beef sub-primals. Food Microbiology, 2017, 62, 196-201.	2.1	37
139	Impact of cold chain and product variability on quality attributes of modified atmosphere packed mushrooms (Agaricus bisporus) throughout distribution. Journal of Food Engineering, 2018, 232, 44-55.	2.7	37
140	Influence of stage of lactation and year season on composition of mares' colostrum and milk and method and time of storage on vitamin C content in mares' milk. Journal of the Science of Food and Agriculture, 2015, 95, 2279-2286.	1.7	36
141	Feasibility of laser-induced breakdown spectroscopy (LIBS) as an at-line validation tool for calcium determination in infant formula. Food Control, 2017, 78, 304-310.	2.8	36
142	Cold Atmospheric Plasma induces accumulation of lysosomes and caspase-independent cell death in U373MG glioblastoma multiforme cells. Scientific Reports, 2019, 9, 12891.	1.6	36
143	Characterization of dielectric barrier discharge atmospheric air cold plasma treated gelatin films. Food Packaging and Shelf Life, 2015, 6, 61-67.	3.3	34
144	Guidelines on reporting treatment conditions for emerging technologies in food processing. Critical Reviews in Food Science and Nutrition, 2022, 62, 5925-5949.	5.4	34

#	Article	IF	Citations
145	Cold Plasma–Based Hurdle Interventions: New Strategies for Improving Food Safety. Food Engineering Reviews, 2020, 12, 321-332.	3.1	33
146	ROTATIONAL RHEOMETRY USING COMPLEX GEOMETRIES? A REVIEW. Journal of Texture Studies, 2003, 34, 1-20.	1.1	32
147	Ferric chloride assisted plasma pretreatment of lignocellulose. Bioresource Technology, 2017, 243, 327-334.	4.8	32
148	Highâ€Performance Plasmaâ€Enabled Biorefining of Microalgae to Valueâ€Added Products. ChemSusChem, 2019, 12, 4976-4985.	3.6	32
149	Diagnostics of plasma reactive species and induced chemistry of plasma treated foods. Critical Reviews in Food Science and Nutrition, 2019, 59, 812-825.	5.4	32
150	Effect of ozonation on the rheological and colour characteristics of hydrocolloid dispersions. Food Research International, 2008, 41, 1035-1043.	2.9	31
151	Quantitative assessment of the shelf life of ozonated apple juice. European Food Research and Technology, 2011, 232, 469-477.	1.6	31
152	Quantitative Assessment of Blood Coagulation by Cold Atmospheric Plasma. Plasma Medicine, 2014, 4, 153-163.	0.2	31
153	Effect of Low Temperature Sonication on Orange Juice Quality Parameters using Response Surface Methodology. Food and Bioprocess Technology, 2009, 2, 109-114.	2.6	30
154	Ozone inactivation of acid stressed Listeria monocytogenes and Listeria innocua in orange juice using a bubble column. Food Control, 2010, 21, 1723-1730.	2.8	30
155	A novel backlight fiber optical probe and image algorithms for real time size-shape analysis during crystallization. Chemical Engineering Science, 2016, 149, 42-50.	1.9	30
156	Hydrogen Peroxide and Beyond-the Potential of High-voltage Plasma-activated Liquids Against Cancerous Cells. Anti-Cancer Agents in Medicinal Chemistry, 2018, 18, 815-823.	0.9	30
157	Optimization of atmospheric air plasma for degradation of organic dyes in wastewater. Water Science and Technology, 2017, 75, 207-219.	1.2	29
158	Chemical composition and whey protein fraction of late lactation mares' milk. International Dairy Journal, 2013, 31, 62-64.	1.5	28
159	Improving enzymatic hydrolysis of brewer spent grain with nonthermal plasma. Bioresource Technology, 2019, 282, 520-524.	4.8	27
160	Low-pressure plasma modification of the rheological properties of tapioca starch. Food Hydrocolloids, 2022, 125, 107380.	5.6	27
161	Multipoint NIR spectroscopy for gross composition analysis of powdered infant formula under various motion conditions. Talanta, 2016, 154, 423-430.	2.9	26
162	Evaluation of plasma, highâ€pressure and ultrasound processing on the stability of fructooligosaccharides. International Journal of Food Science and Technology, 2016, 51, 2034-2040.	1.3	25

#	Article	IF	CITATIONS
163	Quantification of trace metals in infant formula premixes using laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 135, 6-14.	1.5	24
164	Introduction to laser induced breakdown spectroscopy imaging in food: Salt diffusion in meat. Journal of Food Engineering, 2018, 216, 120-124.	2.7	24
165	Uniform atmospheric pressure plasmas in a 7 mm air gap. Applied Physics Letters, 2019, 115, .	1.5	24
166	Impact of cold plasma processing on major peanut allergens. Scientific Reports, 2020, 10, 17038.	1.6	24
167	In-package plasma: From reactive chemistry to innovative food preservation technologies. Trends in Food Science and Technology, 2022, 120, 59-74.	7.8	24
168	Process Analytical Technology (PAT) and Multivariate Methods for Downstream Processes. Current Biochemical Engineering, 2015, 2, 4-16.	1.3	23
169	Characterization of Dielectric Barrier Discharge Atmospheric Air Plasma Treated Chitosan Films. Journal of Food Processing and Preservation, 2017, 41, e12889.	0.9	23
170	Controlled cytotoxicity of plasma treated water formulated by open-air hybrid mode discharge. Applied Physics Letters, 2017, 110, 264102.	1.5	23
171	Cold Atmospheric Plasma Stimulates Clathrin-Dependent Endocytosis to Repair Oxidised Membrane and Enhance Uptake of Nanomaterial in Glioblastoma Multiforme Cells. Scientific Reports, 2020, 10, 6985.	1.6	23
172	Extrinsic control parameters for ozone inactivation of <i>Escherichia coli </i> Journal of Applied Microbiology, 2009, 107, 830-837.	1.4	22
173	Diagnostics of an O ₂ –He RF Atmospheric Plasma Discharge by Spectral Emission. Journal of the Physical Society of Japan, 2014, 83, 014501.	0.7	22
174	Atmospheric Pressure Nonthermal Plasma Sources. , 2016, , 83-116.		22
175	Challenges in Model Development for Meat Composition Using Multipoint NIR Spectroscopy from Atâ€Line to Inâ€Line Monitoring. Journal of Food Science, 2017, 82, 1557-1562.	1.5	22
176	Predicting quality attributes of strawberry packed under modified atmosphere throughout the cold chain. Food Packaging and Shelf Life, 2019, 21, 100354.	3.3	22
177	Prussian blue analogue nanoenzymes mitigate oxidative stress and boost bio-fermentation. Nanoscale, 2019, 11, 19497-19505.	2.8	22
178	Microbial decontamination of chicken using atmospheric plasma bubbles. Plasma Processes and Polymers, 2021, $18,\ldots$	1.6	22
179	Assessing bacterial recovery and efficacy of cold atmospheric plasma treatments. Food and Bioproducts Processing, 2015, 96, 154-160.	1.8	21
180	Laser induced breakdown spectroscopy for quantification of sodium and potassium in minced beef: a potential technique for detecting beef kidney adulteration. Analytical Methods, 2017, 9, 3314-3322.	1.3	21

#	Article	IF	Citations
181	Effects of Cold Plasma on Surface, Thermal and Antimicrobial Release Properties of Chitosan Film. Journal of Renewable Materials, 2017, 5, 14-20.	1.1	21
182	Significance of a Non-Thermal Plasma Treatment on LDPE Biodegradation with Pseudomonas Aeruginosa. Materials, 2018, 11, 1925.	1.3	21
183	Laser-induced breakdown spectroscopy for food authentication. Current Opinion in Food Science, 2019, 28, 96-103.	4.1	21
184	Microsecond pulse gas–liquid discharges in atmospheric nitrogen and oxygen: Discharge mode, stability, and plasma characteristics. Plasma Processes and Polymers, 2021, 18, 2000135.	1.6	21
185	Insights into amoxicillin degradation in water by non-thermal plasmas. Chemosphere, 2022, 291, 132757.	4.2	21
186	Sustainable nitrogen fixation with nanosecond pulsed spark discharges: insights into free-radical-chain reactions. Green Chemistry, 2022, 24, 1534-1544.	4.6	21
187	Humic acid and trihalomethane breakdown with potential by-product formations for atmospheric air plasma water treatment. Journal of Industrial and Engineering Chemistry, 2018, 59, 350-361.	2.9	20
188	The antimicrobial efficacy of plasma-activated water against Listeria and E. coli is modulated by reactor design and water composition. Journal of Applied Microbiology, 2022, 132, 2490-2500.	1.4	20
189	Sustainable Ammonia Synthesis from Nitrogen and Water by One‧tep Plasma Catalysis. Energy and Environmental Materials, 2023, 6, .	7.3	20
190	Visible-Near Infrared Hyperspectral Imaging for the Identification and Discrimination of Brown Blotch Disease on Mushroom (<i>Agaricus Bisporus</i>) Caps. Journal of Near Infrared Spectroscopy, 2010, 18, 341-353.	0.8	19
191	Numerical and experimental studies on a novel Steinmetz treatment chamber for inactivation of Escherichia coli by radio frequency electric fields. Innovative Food Science and Emerging Technologies, 2017, 41, 337-347.	2.7	19
192	Effect of Cold Plasma on Meat Cholesterol and Lipid Oxidation. Foods, 2020, 9, 1786.	1.9	19
193	Assessing stress responses to atmospheric cold plasma exposure using (i>Escherichia coli (i>knock-out mutants. Journal of Applied Microbiology, 2016, 121, 352-363.	1.4	18
194	The Effect of Atmospheric Cold Plasma on Bacterial Stress Responses and Virulence Using Listeria monocytogenes Knockout Mutants. Frontiers in Microbiology, 2019, 10, 2841.	1.5	18
195	Power-to-chemicals: Low-temperature plasma for lignin depolymerisation in ethanol. Bioresource Technology, 2020, 318, 123917.	4.8	18
196	Direct analysis of calcium in liquid infant formula via laser-induced breakdown spectroscopy (LIBS). Food Chemistry, 2020, 309, 125754.	4.2	17
197	Cold atmospheric plasma induces silver nanoparticle uptake, oxidative dissolution and enhanced cytotoxicity in glioblastoma multiforme cells. Archives of Biochemistry and Biophysics, 2020, 689, 108462.	1.4	17
198	Gasâ€phase peroxynitrite generation using dielectric barrier discharge at atmospheric pressure: A prospective sterilizer. Plasma Processes and Polymers, 2021, 18, e2100016.	1.6	17

#	Article	IF	CITATIONS
199	Decontamination of Bacillus subtilis Spores in a Sealed Package Using a Non-thermal Plasma System. NATO Science for Peace and Security Series A: Chemistry and Biology, 2012, , 445-455.	0.5	16
200	Inducing a Dielectric Barrier Discharge Plasma Within a Package. IEEE Transactions on Plasma Science, 2014, 42, 2368-2369.	0.6	16
201	Multipoint NIR spectrometry and collimated light for predicting the composition of meat samples with high standoff distances. Journal of Food Engineering, 2016, 175, 58-64.	2.7	16
202	Plasma-digital nexus: plasma nanotechnology for the digital manufacturing age. Reviews of Modern Plasma Physics, 2020, 4, 1.	2.2	16
203	A comparative study on the performance of three treatment chamber designs for radio frequency electric field processing. Computers and Chemical Engineering, 2018, 108, 206-216.	2.0	15
204	Inactivation efficacy of atmospheric air plasma and airborne acoustic ultrasound against bacterial biofilms. Scientific Reports, 2021, 11, 2346.	1.6	15
205	Diagnostics of a large volume pinâ€toâ€plate atmospheric plasma source for the study of plasma species interactions with cancer cell cultures. Plasma Processes and Polymers, 2021, 18, 2000250.	1.6	15
206	Inactivation of foodborne viruses: Opportunities for cold atmospheric plasma. Trends in Food Science and Technology, 2022, 124, 323-333.	7.8	15
207	Power-to-decarbonization: Mesoporous carbon-MgO nanohybrid derived from plasma-activated seawater salt-loaded biomass for efficient CO2 capture. Journal of CO2 Utilization, 2021, 53, 101711.	3.3	14
208	Efficacy optimization of plasma-activated water for food sanitization through two reactor design configurations. Innovative Food Science and Emerging Technologies, 2021, 74, 102867.	2.7	14
209	Investigation of a scalable barrel atmospheric plasma reactor for the treatment of polymer particles. Surface and Coatings Technology, 2016, 308, 435-441.	2.2	13
210	Health condition assessment for vegetation exposed to heavy metal pollution through airborne hyperspectral data. Environmental Monitoring and Assessment, 2017, 189, 604.	1.3	13
211	Inactivation kinetics of Escherichia coli in cranberry juice during multistage treatment by electric fields. Food Research International, 2018, 106, 780-790.	2.9	13
212	Rapid analysis of magnesium in infant formula powder using laser-induced breakdown spectroscopy. International Dairy Journal, 2019, 97, 57-64.	1.5	13
213	Surface plasma discharges for the preservation of fresh-cut apples: microbial inactivation and quality attributes. Journal Physics D: Applied Physics, 2020, 53, 174003.	1.3	13
214	Non-thermal plasma enhances performances of biochar in wastewater treatment and energy storage applications. Frontiers of Chemical Science and Engineering, 2022, 16, 475-483.	2.3	13
215	Platinum nanoparticles inhibit intracellular ROS generation and protect against cold atmospheric plasma-induced cytotoxicity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 36, 102436.	1.7	13
216	Estimating the efficacy of mild heating processes taking into account microbial non-linearities: A case study on the thermisation of a food simulant. Food Control, 2011, 22, 137-142.	2.8	12

#	Article	IF	CITATIONS
217	Advances in control of food mixing operations. Current Opinion in Food Science, 2017, 17, 89-93.	4.1	12
218	Sampling effects on the quantification of sodium content in infant formula using laser-induced breakdown spectroscopy (LIBS). International Dairy Journal, 2018, 85, 49-55.	1.5	12
219	Plasma bubbles: a route to sustainable chemistry. AAPPS Bulletin, 2021, 31, 1.	2.7	12
220	Plasma induced reactive oxygen speciesâ€dependent cytotoxicity in glioblastoma 3D tumourspheres. Plasma Processes and Polymers, 2022, 19, .	1.6	12
221	Principles of Nonthermal Plasma Decontamination. , 2016, , 143-177.		11
222	Quantification of rubidium as a trace element in beef using laser induced breakdown spectroscopy. Meat Science, 2017, 130, 47-49.	2.7	11
223	Alignment of UAV-hyperspectral bands using keypoint descriptors in a spectrally complex environment. Remote Sensing Letters, 2018, 9, 524-533.	0.6	11
224	Feasibility of near Infrared Chemical Imaging for Pharmaceutical Cleaning Verification. Journal of Near Infrared Spectroscopy, 2013, 21, 173-182.	0.8	10
225	Crystallization monitoring using simultaneous bright field and PlasDIC imaging. Chemical Engineering Journal, 2016, 300, 64-74.	6.6	10
226	Spectroscopic investigation of a dielectric barrier discharge in modified atmosphere packaging. EPJ Applied Physics, 2017, 80, 20801.	0.3	10
227	IN-LINE CONSISTENCY MONITORING OF TOMATO BASED PRODUCTS USING VIBRATIONAL PROCESS VISCOMETRY. Journal of Food Processing and Preservation, 2001, 25, 337-351.	0.9	9
228	Application of phosphorescent oxygen sensors in in-package dielectric barrier discharge plasma environment. Innovative Food Science and Emerging Technologies, 2016, 33, 234-239.	2.7	9
229	Converging technologies: targeting the hallmarks of cancer using ultrasound and microbubbles. Trends in Cancer, 2021, 7, 886-890.	3.8	9
230	Development and characterization of touchable air plasma jet device for inactivation of oral bacteria. Results in Physics, 2022, 36, 105405.	2.0	9
231	Phase-resolved optical emission spectroscopy for an electron cyclotron resonance etcher. Journal of Applied Physics, 2013, 113, 163302.	1.1	8
232	Importance of Plasma Thermal Energy Transfer for Plasma Jet Systems. IEEE Transactions on Plasma Science, 2014, 42, 2426-2427.	0.6	8
233	NIR spectrophotometry with integrated beam splitter as a process analytical technology for meat composition analysis. Analytical Methods, 2016, 8, 4134-4141.	1.3	8
234	Prediction of Beef Fat Content Simultaneously under Static and Motion Conditions Using near Infrared Spectroscopy. Journal of Near Infrared Spectroscopy, 2016, 24, 353-361.	0.8	8

#	Article	IF	Citations
235	Facilitating smart HACCP strategies with Process Analytical Technology. Current Opinion in Food Science, 2017, 17, 94-99.	4.1	8
236	Combination Strategies for Targeted Delivery of Nanoparticles for Cancer Therapy., 2019,, 191-219.		8
237	Effect of plasma activated water on the nutritional composition, storage quality and microbial safety of beef. LWT - Food Science and Technology, 2022, 154, 112794.	2.5	8
238	New challenges in food science and technology: an industrial perspective. Trends in Food Science and Technology, 2009, 20, 180-181.	7.8	7
239	Characterization of a Novel Atmospheric Air Cold Plasma System for Treatment of Packaged Biomaterials. Transactions of the ASABE, 0, , 1011-1016.	1.1	7
240	Moisture Determination of Static and In-Motion Powdered Infant Formula Utilising Multiprobe near Infrared Spectroscopy. Journal of Near Infrared Spectroscopy, 2015, 23, 245-253.	0.8	7
241	Inner surface biofilm inactivation by atmospheric pressure helium porous plasma jet. Plasma Processes and Polymers, 2018, 15, 1800055.	1.6	7
242	Two Steps Back, One Leap Forward: Synergistic Energy Conversion in Plasmonic and Plasma Catalysis. ACS Energy Letters, 2022, 7, 300-309.	8.8	7
243	Spatial phase-resolved optical emission spectroscopy for understanding plasma etching uniformity. Europhysics Letters, 2015, 110, 43001.	0.7	6
244	Impact of atmospheric pressure nonequilibrium plasma discharge on polymer surface metrology. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	6
245	Spectroscopic study of excited molecular nitrogen generation due to interactions of metastable noble gas atoms. Plasma Processes and Polymers, 2018, 15, 1800018.	1.6	6
246	Mapping of Complex Vegetation Communities and Species Using UAV-LIDAR Metrics and High-Resolution Optical Data. , 2019, , .		6
247	Elemental analysis of fish feed by laser-induced breakdown spectroscopy. Talanta, 2020, 219, 121258.	2.9	6
248	Effect of solution pH on the characteristics of pulsed gas–liquid discharges and aqueous reactive species in atmospheric air. Journal of Applied Physics, 2021, 130, .	1.1	6
249	Enhanced pyrazolopyrimidinones cytotoxicity against glioblastoma cells activated by ROS-Generating cold atmospheric plasma. European Journal of Medicinal Chemistry, 2021, 224, 113736.	2.6	6
250	High-resolution mapping of upland swamp vegetation using an unmanned aerial vehicle-hyperspectral system. Journal of Spectral Imaging, 0, , .	0.0	6
251	Evaluation of Diffuse Reflectance near Infrared Fibre Optical Sensors in Measurements for Chemical Identification and Quantification for Binary Granule Blends. Journal of Near Infrared Spectroscopy, 2015, 23, 133-144.	0.8	5
252	Unveiling the synergistic effect of combining low and high frequency electric fields for microbiological safety in liquid food processing. Journal of Food Engineering, 2021, 303, 110588.	2.7	5

#	Article	IF	Citations
253	Investigation of Raman Spectroscopy (with Fiber Optic Probe) and Chemometric Data Analysis for the Determination of Mineral Content in Aqueous Infant Formula. Foods, 2020, 9, 968.	1.9	4
254	Potential application of non-thermal atmospheric plasma in reducing the activity of Pseudomonas-secreted proteases in milk. International Dairy Journal, 2021, 120, 105078.	1.5	4
255	Meat Quality of Crossbred Porkers without the Gene RYR1T Depending on Slaughter Weight. Asian-Australasian Journal of Animal Sciences, 2015, 28, 398-404.	2.4	4
256	Application of plasma-activated water for <i>Escherichia coli </i> decontamination and shelf-life extension of kale. Food Quality and Safety, 2022, 6, .	0.6	4
257	ON-LINE RHEOLOGICAL CHARACTERIZATION OF PIZZA SAUCE USING TUBE VISCOMETRY. Journal of Food Process Engineering, 2001, 24, 145-159.	1.5	3
258	Particulate and Powder Mixing. , 0, , 269-287.		3
259	Evaluation of Mixing and Air Bubble Dispersion in Viscous Liquids using Numerical Simulations. , 0, , 253-268.		3
260	Mixing in the Food Industry: Trends and Challenges. , 0, , 1-5.		3
261	Characterization of a Novel Cold Atmospheric Air Plasma System for Treatment of Packaged Liquid Food Products. , 2012, , .		3
262	Multipoint near-infrared spectrometry for real-time monitoring of protein conformational stability in powdered infant formula. International Journal of Food Sciences and Nutrition, 2015, 66, 526-532.	1.3	3
263	Impact of plasma jet geometry on residence times of radical species. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	3
264	Atmospheric air plasma induces increased cell aggregation during the formation of <i>Escherichia coli</i> biofilms. Plasma Processes and Polymers, 2018, 15, 1700212.	1.6	3
265	In situ Image Processing and Data Binning Strategy for Particle Engineering Applications. Chemical Engineering and Technology, 2020, 43, 1618-1629.	0.9	3
266	Emerging macroscopic pretreatment. , 2015, , 197-225.		2
267	Non-invasive 3D and 360° optical imaging of micro-particles. Scientific Reports, 2017, 7, 6384.	1.6	2
268	Multipoint NIR spectroscopy for simultaneous analyses of dairy products – Part B: Quantification. NIR News, 2017, 28, 13-16.	1.6	2
269	Reactor modelling of treatment chamber for the inactivation of ⟨scp⟩⟨i⟩Escherichia coli⟨ i⟩⟨ scp⟩ by radio frequency electric field–Âmechanistic ⟨i⟩versus⟨ i⟩ empirical approaches. Journal of Chemical Technology and Biotechnology, 2018, 93, 3512-3525.	1.6	2
270	Equipment Design. , 0, , 73-89.		1

#	Article	IF	CITATIONS
271	Rheology and Mixing., 0,, 50-72.		1
272	Fluid Rheology in Novel Thermal and Non-Thermal Processes. , 2012, , 35-61.		1
273	Food Science and Technology from Wiley-Blackwell. , 2012, , 299-300.		1
274	Powder Blending Equipment., 2015,, 287-310.		1
275	Multipoint near Infrared Spectroscopy for Simultaneous Analyses of Dairy Ingredients. Part A: Characterisation. NIR News, 2016, 27, 7-10.	1.6	1
276	Adaptive Background Correction of Crystal Image Datasets: Towards Automated Process Control. Sensing and Imaging, 2020, 21, 1.	1.0	1
277	Chemo-Radiative Stress of Plasma as a Modulator of Charge-Dependent Nanodiamond Cytotoxicity. ACS Applied Bio Materials, 2020, 3, 7202-7210.	2.3	1
278	Biomolecules as Model Indicators of In Vitro and In Vivo Cold Plasma Safety. Frontiers in Physics, 2021, 8, .	1.0	1
279	Synergistic cytotoxicity from cold atmospheric plasma and ultrasound in glioma cells. Plasma Processes and Polymers, 0, , .	1.6	1
280	Mixing Scale-Up., 0,, 90-106.		0
281	Solid–Liquid Mixing. , 0, , 199-229.		0
282	Mixing Fundamentals., 0,, 6-20.		0
283	Equipment Qualification, Process and Cleaning Validation. , 2015, , 369-399.		0
284	Near Infrared Data Analysis Using R: Live Streaming Graph Generation and Processed Data Visualisation. NIR News, 2015, 26, 15-17.	1.6	0
285	Evaluating the Performance of Collimated Light for near Infrared Analysis of Minced Beef Samples. NIR News, 2016, 27, 14-16.	1.6	0
286	Emerging macroscopic pretreatment., 2021,, 173-193.		0
287	Effect of Ozonation on the Physicochemical, Thermal and Structural Properties of Wheat Starch Samples. Special Publication - Royal Society of Chemistry, 2012, , 107-113.	0.0	0
288	Systems for Generation of Cold Plasma. , 2022, , 37-46.		0

ARTICLE

Where Physics Meets (BIO-)Chemistry: Reactive Plasmas for Sustainable Processing and Activation.,

289

O