Priyanka Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1270904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strong Antimicrobial Activity of Silver Nanoparticles Obtained by the Green Synthesis in Viridibacillus sp. Extracts. Frontiers in Microbiology, 2022, 13, 820048.	1.5	28
2	Antibacterial Effect of Silver Nanoparticles Is Stronger If the Production Host and the Targeted Pathogen Are Closely Related. Biomedicines, 2022, 10, 628.	1.4	30
3	Rowan Berries: A Potential Source for Green Synthesis of Extremely Monodisperse Gold and Silver Nanoparticles and Their Antimicrobial Property. Pharmaceutics, 2022, 14, 82.	2.0	17
4	Green synthesis and antibacterial applications of gold and silver nanoparticles from Ligustrum vulgare berries. Scientific Reports, 2022, 12, 7902.	1.6	23
5	Antimicrobial, antioxidant, and anticancer potentials of AgCl nanoparticles biosynthesized by Flavobacterium panacis. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	10
6	FeCo nanoparticles as antibacterial agents with improved response in magnetic field: an insight into the associated toxicity mechanism. Nanotechnology, 2021, 32, 335101.	1.3	2
7	Advances in gold nanoparticle technology as a tool for diagnostics and treatment of cancer. Expert Review of Molecular Diagnostics, 2021, 21, 627-630.	1.5	16
8	Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability. Scientific Reports, 2021, 11, 12619.	1.6	53
9	Pathogenesis strategies and regulation of ginsenosides by two species of Ilyonectria in Panax ginseng: power of speciation. Journal of Ginseng Research, 2020, 44, 332-340.	3.0	23
10	Interactions of Gold and Silver Nanoparticles with Bacterial Biofilms: Molecular Interactions behind Inhibition and Resistance. International Journal of Molecular Sciences, 2020, 21, 7658.	1.8	133
11	A Sustainable Approach for the Green Synthesis of Silver Nanoparticles from Solibacillus isronensis sp. and Their Application in Biofilm Inhibition. Molecules, 2020, 25, 2783.	1.7	32
12	Gold Nanoparticles Synthesized with Fresh <i>Panax ginseng</i> Leaf Extract Suppress Adipogenesis by Downregulating PPAR <i>î³</i> /CEBP <i>î±</i> Signaling in 3T3-L1 Mature Adipocytes. Journal of Nanoscience and Nanotechnology, 2019, 19, 701-708.	0.9	13
13	Facile synthesis of Au and Ag nanoparticles using fruit extract of Lycium chinense and their anticancer activity. Journal of Drug Delivery Science and Technology, 2019, 49, 308-315.	1.4	51
14	Discovery of a new primer set for detection and quantification of Ilyonectria mors-panacis in soils for ginseng cultivation. Journal of Ginseng Research, 2019, 43, 1-9.	3.0	7
15	Biosynthesis of gold and silver chloride nanoparticles mediated by <i>Crataegus pinnatifida</i> fruit extract: <i>in vitro</i> study of anti-inflammatory activities. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-11.	1.9	21
16	<i>In vitro</i> anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of <i>Prunus serrulata</i> : a green synthetic approach. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-11.	1.9	89
17	Extracellular synthesis of silver nanoparticles by Pseudomonas sp. THG-LS1.4 and their antimicrobial application. Journal of Pharmaceutical Analysis, 2018, 8, 258-264.	2.4	138
18	Applications of Panax ginseng leaves-mediated gold nanoparticles in cosmetics relation to antioxidant, moisture retention, and whitening effect on B16BL6 cells. Journal of Ginseng Research, 2018, 42, 327-333.	3.0	60

Priyanka Singh

#	Article	IF	CITATIONS
19	Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 108-117.	1.9	109
20	Biological synthesis of gold and silver chloride nanoparticles by <i>Glycyrrhiza uralensis</i> and <i>in vitro</i> applications. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 303-312.	1.9	76
21	Biosynthesized gold and silver nanoparticles by aqueous fruit extract of <i>Chaenomeles sinensis</i> and screening of their biomedical activities. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 599-606.	1.9	52
22	Cold nanoflowers synthesized using Acanthopanacis cortex extract inhibit inflammatory mediators in LPS-induced RAW264.7 macrophages via NF-κB and AP-1 pathways. Colloids and Surfaces B: Biointerfaces, 2018, 162, 398-404.	2.5	50
23	Ecofriendly synthesis of silver and gold nanoparticles by <i>Euphrasia officinalis</i> leaf extract and its biomedical applications. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1163-1170.	1.9	173
24	Anti-biofilm effects of gold and silver nanoparticles synthesized by the <i>Rhodiola rosea</i> rhizome extracts. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 886-899.	1.9	98
25	Antimicrobial Effects of Biogenic Nanoparticles. Nanomaterials, 2018, 8, 1009.	1.9	138
26	Role of green silver nanoparticles synthesized from Symphytum officinale leaf extract in protection against UVB-induced photoaging. Journal of Nanostructure in Chemistry, 2018, 8, 359-368.	5.3	43
27	Development of superparamagnetic iron oxide nanoparticles via direct conjugation with ginsenosides and its in-vitro study. Journal of Photochemistry and Photobiology B: Biology, 2018, 185, 100-110.	1.7	42
28	Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial) Tj ETQq0 13, 3571-3591.	0 0 rgBT 3.3	Overlock 10 165
29	Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer. International Journal of Molecular Sciences, 2018, 19, 1979.	1.8	709
30	Bovine serum albumin as a nanocarrier for the efficient delivery of ginsenoside compound K: preparation, physicochemical characterizations and in vitro biological studies. RSC Advances, 2017, 7, 15397-15407.	1.7	55
31	Aluminium resistant, plant growth promoting bacteria induce overexpression of Aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against Aluminium stress. Microbiological Research, 2017, 200, 45-52.	2.5	49
32	Achromobacter panacis sp. nov., isolated from rhizosphere of Panax ginseng. Journal of Microbiology, 2017, 55, 428-434.	1.3	7
33	Cross Interaction Between Ilyonectria mors-panacis Isolates Infecting Korean Ginseng and Ginseng Saponins in Correlation with Their Pathogenicity. Phytopathology, 2017, 107, 561-569.	1.1	17
34	Rhodoferax koreense sp. nov, an obligately aerobic bacterium within the family Comamonadaceae, and emended description of the genus Rhodoferax. Journal of Microbiology, 2017, 55, 767-774.	1.3	17
35	Publisher's note. Colloids and Surfaces B: Biointerfaces, 2017, 160, 423.	2.5	16
36	Engineering of mesoporous silica nanoparticles for release of ginsenoside CK and Rh2 to enhance their anticancer and anti-inflammatory efficacy: in vitro studies. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	27

Priyanka Singh

#	Article	IF	CITATIONS
37	Pedobacter panacis sp. nov., isolated from Panax ginseng soil. Antonie Van Leeuwenhoek, 2017, 110, 235-244.	0.7	10
38	Pharmacological importance, characterization and applications of gold and silver nanoparticles synthesized by <i>Panax ginseng</i> fresh leaves. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 1415-1424.	1.9	42
39	Gold nanoparticles synthesized using <i>Panax ginseng</i> leaves suppress inflammatory - mediators production via blockade of NF-κB activation in macrophages. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 270-276.	1.9	50
40	In situ preparation of water-soluble ginsenoside Rh2-entrapped bovine serum albumin nanoparticles: in vitro cytocompatibility studies. International Journal of Nanomedicine, 2017, Volume 12, 4073-4084.	3.3	40
41	Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1-6.	1.9	85
42	Green synthesis of silver nanoparticles by <i>Bacillus methylotrophicus</i> , and their antimicrobial activity. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1-6.	1.9	108
43	The development of a green approach for the biosynthesis of silver and gold nanoparticles by using <i>Panax ginseng</i> root extract, and their biological applications. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1-8.	1.9	77
44	Green synthesis of multifunctional silver and gold nanoparticles from the oriental herbal adaptogen: Siberian ginseng. International Journal of Nanomedicine, 2016, Volume 11, 3131-3143.	3.3	78
45	Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. International Journal of Nanomedicine, 2016, Volume 11, 3691-3701.	3.3	109
46	Flavobacterium panacis sp. nov., isolated from rhizosphere of Panax ginseng. Antonie Van Leeuwenhoek, 2016, 109, 1199-1208.	0.7	7
47	Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends in Biotechnology, 2016, 34, 588-599.	4.9	1,161
48	Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51 T isolated from Korean kimchi. Enzyme and Microbial Technology, 2016, 95, 85-93.	1.6	126
49	Anticancer activity of silver nanoparticles from Panax ginseng fresh leaves in human cancer cells. Biomedicine and Pharmacotherapy, 2016, 84, 158-165.	2.5	114
50	Paenibacillus puernese sp. nov., a β-glucosidase-producing bacterium isolated from Pu'er tea. Archives of Microbiology, 2016, 198, 211-217.	1.0	6
51	Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzyme and Microbial Technology, 2016, 86, 75-83.	1.6	142
52	Chryseobacterium panacis sp. nov., isolated from ginseng soil. Antonie Van Leeuwenhoek, 2016, 109, 187-196.	0.7	9
53	A strategic approach for rapid synthesis of gold and silver nanoparticles by <i>Panax ginseng</i> leaves. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1949-1957.	1.9	167
54	Protopanaxadiol aglycone ginsenoside-polyethylene glycol conjugates: synthesis, physicochemical characterizations, and <i>in vitro</i> studies. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1803-1809.	1.9	20

PRIYANKA SINGH

#	Article	IF	CITATIONS
55	Characterization and antimicrobial application of biosynthesized gold and silver nanoparticles by using <i>Microbacterium resistens</i> . Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1714-1721.	1.9	36
56	<i>Pseudomonas deceptionensis</i> DC5-mediated synthesis of extracellular silver nanoparticles. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1576-1581.	1.9	91
57	<i>Weissella oryzae</i> DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1569-1575.	1.9	81
58	Microbial synthesis of Flower-shaped gold nanoparticles. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1469-1474.	1.9	47
59	Phenylobacterium panacis sp. nov., isolated from the rhizosphere of rusty mountain ginseng. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 2691-2696.	0.8	13
60	Biosynthesis of Anisotropic Silver Nanoparticles by <i>Bhargavaea indica</i> and Their Synergistic Effect with Antibiotics against Pathogenic Microorganisms. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	61
61	Burkholderia ginsengiterrae sp. nov. and Burkholderia panaciterrae sp. nov., antagonistic bacteria against root rot pathogen Cylindrocarpon destructans, isolated from ginseng soil. Archives of Microbiology, 2015, 197, 439-447.	1.0	48
62	Cupriavidus yeoncheonense sp. nov., isolated from soil of ginseng. Antonie Van Leeuwenhoek, 2015, 107, 749-758.	0.7	22
63	Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. International Journal of Nanomedicine, 2015, 10, 2567.	3.3	148
64	Sphingomonas panacis sp. nov., isolated from rhizosphere of rusty ginseng. Antonie Van Leeuwenhoek, 2015, 108, 711-720.	0.7	25
65	Microbacterium rhizomatis sp. nov., a β-glucosidase-producing bacterium isolated from rhizome of Korean mountain ginseng. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 3196-3202.	0.8	9
66	Paenibacillus panaciterrae sp. nov., isolated from ginseng-cultivated soil. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 4080-4086.	0.8	8
67	Anti-biofouling organic-inorganic hybrid membrane for water treatment. Journal of Materials Chemistry, 2012, 22, 1834-1844.	6.7	50
68	Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles. , 0, .		1