Natalia Gass

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1270674/publications.pdf

Version: 2024-02-01

566801 676716 22 684 15 22 citations h-index g-index papers 22 22 22 1454 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Dopamine transporter silencing in the rat: systems-level alterations in striato-cerebellar and prefrontal-midbrain circuits. Molecular Psychiatry, 2022, 27, 2329-2339.	4.1	16
2	Separable neural mechanisms for the pleiotropic association of copy number variants with neuropsychiatric traits. Translational Psychiatry, 2020, 10, 93.	2.4	12
3	The influence of ketamine's repeated treatment on brain topology does not suggest an antidepressant efficacy. Translational Psychiatry, 2020, 10, 56.	2.4	12
4	Differences between ketamine's short-term and long-term effects on brain circuitry in depression. Translational Psychiatry, 2019, 9, 172.	2.4	23
5	Antagonism at the NR2B subunit of NMDA receptors induces increased connectivity of the prefrontal and subcortical regions regulating reward behavior. Psychopharmacology, 2018, 235, 1055-1068.	1.5	21
6	Defining the brain circuits involved in psychiatric disorders: IMI-NEWMEDS. Nature Reviews Drug Discovery, 2017, 16, 1-2.	21.5	35
7	Influence of regional cerebral blood volume on voxel-based morphometry. NMR in Biomedicine, 2016, 29, 787-795.	1.6	1
8	Brain network reorganization differs in response to stress in rats genetically predisposed to depression and stress-resilient rats. Translational Psychiatry, 2016, 6, e970-e970.	2.4	21
9	An acetylcholine alpha7 positive allosteric modulator rescues a schizophrenia-associated brain endophenotype in the 15q13.3 microdeletion, encompassing CHRNA7. European Neuropsychopharmacology, 2016, 26, 1150-1160.	0.3	34
10	Species-conserved reconfigurations of brain network topology induced by ketamine. Translational Psychiatry, 2016, 6, e786-e786.	2.4	30
11	Reduced connectivity and inter-hemispheric symmetry of the sensory system in a rat model of vulnerability to developing depression. Neuroscience, 2015, 310, 742-750.	1.1	12
12	Acute ketamine challenge increases resting state prefrontal-hippocampal connectivity in both humans and rats. Psychopharmacology, 2015, 232, 4231-4241.	1.5	76
13	Sub-Anesthetic Ketamine Modulates Intrinsic BOLD Connectivity Within the Hippocampal-Prefrontal Circuit in the Rat. Neuropsychopharmacology, 2014, 39, 895-906.	2.8	89
14	Advantages and Challenges of Small Animal Magnetic Resonance Imaging as a Translational Tool. Neuropsychobiology, 2014, 69, 187-201.	0.9	65
15	Functionally altered neurocircuits in a rat model of treatment-resistant depression show prominent role of the habenula. European Neuropsychopharmacology, 2014, 24, 381-390.	0.3	30
16	Haloperidol modulates midbrain-prefrontal functional connectivity in the rat brain. European Neuropsychopharmacology, 2013, 23, 1310-1319.	0.3	31
17	The low-frequency blood oxygenation level-dependent functional connectivity signature of the hippocampal–prefrontal network in the rat brain. Neuroscience, 2013, 228, 243-258.	1.1	36
18	Anti-Correlated Cortical Networks of Intrinsic Connectivity in the Rat Brain. Brain Connectivity, 2013, 3, 503-511.	0.8	55

#	Article	IF	CITATIONS
19	Inter-tissue Networks Between the Basal Forebrain, Hippocampus, and Prefrontal Cortex in a Model for Depression Caused by Disturbed Sleep. Journal of Neurogenetics, 2012, 26, 397-412.	0.6	5
20	Contribution of adenosine related genes to the risk of depression with disturbed sleep. Journal of Affective Disorders, 2010, 126, 134-139.	2.0	49
21	Gene expression patterns in a rodent model for depression. European Journal of Neuroscience, 2010, 31, 1465-1473.	1.2	8
22	The role of the basal forebrain adenosine receptors in sleep homeostasis. NeuroReport, 2009, 20, 1013-1018.	0.6	23