Klara Slezakova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/127042/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Indoor Air Quality Under Restricted Ventilation andÂOccupancy Scenarios withÂFocus onÂParticulate Matter: AÂCase Study ofÂFitness Centre. Studies in Systems, Decision and Control, 2022, , 345-354.	0.8	1
2	Air Quality in Fitness Centers. U Porto Journal of Engineering, 2022, 8, 26-35.	0.2	1
3	POLYMORPHISMS OF INSULIN RECEPTOR SUBSTRATE 1 AS A RISK FACTOR FOR TYPE 2 DIABETES MELLITUS, OBESITY AND CHRONIC PANCREATITIS AMONG POPULATION OF TERNOPIL REGION. International Journal of Medicine and Medical Research, 2021, 6, 30-36.	0.0	0
4	2020 COVID-19 lockdown and the impacts on air quality with emphasis on urban, suburban and rural zones. Scientific Reports, 2021, 11, 21336.	1.6	21
5	Firefighters exposure to fire emissions: Impact on levels of biomarkers of exposure to polycyclic aromatic hydrocarbons and genotoxic/oxidative-effects. Journal of Hazardous Materials, 2020, 383, 121179.	6.5	44
6	Ultrafine particles: Levels in ambient air during outdoor sport activities. Environmental Pollution, 2020, 258, 113648.	3.7	25
7	Assessment of indoor air exposure at residential homes: Inhalation dose and lung deposition of PM10, PM2.5 and ultrafine particles among newborn children and their mothers. Science of the Total Environment, 2020, 717, 137293.	3.9	65
8	Assessment of indoor air exposure among newborns and their mothers: Levels and sources of PM10, PM2.5 and ultrafine particles at 65 home environments. Environmental Pollution, 2020, 264, 114746.	3.7	37
9	(Ultra) Fine particle concentrations and exposure in different indoor and outdoor microenvironments during physical exercising. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2019, 82, 591-602.	1.1	10
10	Assessment of ultrafine particles in primary schools: Emphasis on different indoor microenvironments. Environmental Pollution, 2019, 246, 885-895.	3.7	39
11	Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: A review on indoor and outdoor exposure levels, major sources and health impacts. Environment International, 2019, 124, 180-204.	4.8	204
12	Indoor particulate pollution in fitness centres with emphasis on ultrafine particles. Environmental Pollution, 2018, 233, 180-193.	3.7	35
13	Indoor air quality in health clubs: Impact of occupancy and type of performed activities on exposure levels. Journal of Hazardous Materials, 2018, 359, 56-66.	6.5	23
14	Polycyclic aromatic hydrocarbons at fire stations: firefighters' exposure monitoring and biomonitoring, and assessment of the contribution to total internal dose. Journal of Hazardous Materials, 2017, 323, 184-194.	6.5	65
15	Indoor air quality in preschools (3- to 5-year-old children) in the Northeast of Portugal during spring–summer season: pollutants and comfort parameters. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 740-755.	1.1	13
16	Individual and cumulative impacts of fire emissions and tobacco consumption on wildland firefighters' total exposure to polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 2017, 334, 10-20.	6.5	27
17	Occupational exposure of firefighters to polycyclic aromatic hydrocarbons in non-fire work environments. Science of the Total Environment, 2017, 592, 277-287.	3.9	32
18	Polycyclic aromatic hydrocarbons (PAH) in Portuguese educational settings: a comparison between preschools and elementary schools. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 630-640.	1.1	8

KLARA SLEZAKOVA

#	Article	IF	CITATIONS
19	Assessment of exposure to polycyclic aromatic hydrocarbons in preschool children: Levels and impact of preschool indoor air on excretion of main urinary monohydroxyl metabolites. Journal of Hazardous Materials, 2017, 322, 357-369.	6.5	40
20	Polycyclic aromatic hydrocarbons in primary school environments: Levels and potential risks. Science of the Total Environment, 2017, 575, 1156-1167.	3.9	48
21	Children exposure to indoor ultrafine particles in urban and rural school environments. Environmental Science and Pollution Research, 2016, 23, 13877-13885.	2.7	17
22	Firefighters' exposure biomonitoring: Impact of firefighting activities on levels of urinary monohydroxyl metabolites. International Journal of Hygiene and Environmental Health, 2016, 219, 857-866.	2.1	37
23	Assessment of air quality in preschool environments (3–5 years old children) with emphasis on elemental composition of PM10 and PM2.5. Environmental Pollution, 2016, 214, 430-439.	3.7	24
24	Assessment of polycyclic aromatic hydrocarbons in indoor and outdoor air of preschool environments (3–5 years old children). Environmental Pollution, 2016, 208, 382-394.	3.7	49
25	Polycyclic aromatic hydrocarbons: levels and phase distributions in preschool microenvironment. Indoor Air, 2015, 25, 557-568.	2.0	26
26	Exposure of Children to Ultrafine Particles in Primary Schools in Portugal. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 904-914.	1.1	17
27	Children's Indoor Exposures to (Ultra)Fine Particles in an Urban Area: Comparison Between School and Home Environments. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 886-896.	1.1	16
28	Exposure to polycyclic aromatic hydrocarbons and assessment of potential risks in preschool children. Environmental Science and Pollution Research, 2015, 22, 13892-13902.	2.7	11
29	Ultrafine Particles in Ambient Air of an Urban Area: Dose Implications for Elderly. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2014, 77, 827-836.	1.1	6
30	Assessment of ultrafine particles in Portuguese preschools: levels and exposure doses. Indoor Air, 2014, 24, 618-628.	2.0	57
31	Levels and risks of particulate-bound PAHs in indoor air influenced by tobacco smoke: a field measurement. Environmental Science and Pollution Research, 2014, 21, 4492-4501.	2.7	35
32	Trace metals in size-fractionated particulate matter in a Portuguese hospital: exposure risks assessment and comparisons with other countries. Environmental Science and Pollution Research, 2014, 21, 3604-3620.	2.7	26
33	PAH air pollution at a Portuguese urban area: carcinogenic risks and sources identification. Environmental Science and Pollution Research, 2013, 20, 3932-3945.	2.7	83
34	Evaluation of atmospheric deposition and patterns of polycyclic aromatic hydrocarbons in façades of historic monuments of Oporto (Portugal). International Journal of Environmental Analytical Chemistry, 2013, 93, 1052-1064.	1.8	3
35	Impact of vehicular traffic emissions on particulate-bound PAHs: Levels and associated health risks. Atmospheric Research, 2013, 127, 141-147.	1.8	96
36	Forest fires in Northern region of Portugal: Impact on PM levels. Atmospheric Research, 2013, 127, 148-153.	1.8	13

KLARA SLEZAKOVA

#	Article	IF	CITATIONS
37	Elemental Characterization Of Indoor Breathable Particles at a Portuguese Urban Hospital. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2012, 75, 909-919.	1.1	27
38	Indoor Air Pollutants: Relevant Aspects and Health Impacts. , 2012, , .		7
39	ldentification of tobacco smoke components in indoor breathable particles by SEM–EDS. Atmospheric Environment, 2011, 45, 863-872.	1.9	26
40	Polycyclic aromatic hydrocarbons in gas and particulate phases of indoor environments influenced by tobacco smoke: Levels, phase distributions, and health risks. Atmospheric Environment, 2011, 45, 1799-1808.	1.9	109
41	Air pollution from traffic emissions in Oporto, Portugal: Health and environmental implications. Microchemical Journal, 2011, 99, 51-59.	2.3	84
42	Influence of Traffic Emissions on the Carcinogenic Polycyclic Aromatic Hydrocarbons in Outdoor Breathable Particles. Journal of the Air and Waste Management Association, 2010, 60, 393-401.	0.9	45
43	Influence of tobacco smoke on the elemental composition of indoor particles of different sizes. Atmospheric Environment, 2009, 43, 486-493.	1.9	64
44	Influence of tobacco smoke on carcinogenic PAH composition in indoor PM10 and PM2.5. Atmospheric Environment, 2009, 43, 6376-6382.	1.9	44
45	Analysis of polycyclic aromatic hydrocarbons in atmospheric particulate samples by microwaveâ€assisted extraction and liquid chromatography. Journal of Separation Science, 2009, 32, 501-510.	1.3	53
46	Influence of traffic emissions on the composition of atmospheric particles of different sizes—Part 2: SEM–EDS characterization. Journal of Atmospheric Chemistry, 2008, 60, 221-236.	1.4	48
47	Influence of traffic emissions on the composition of atmospheric particles of different sizes – Part 1: concentrations and elemental characterization. Journal of Atmospheric Chemistry, 2007, 58, 55-68.	1.4	61
48	Influence of traffic on the elemental composition of PM10 and PM2.5 in Oporto region. WIT Transactions on Ecology and the Environment, 2007, , .	0.0	2
49	Concentrations and Mass Distribution of Atmospheric Particles: Influence of Forest Fires. Epidemiology, 2006, 17, S159-S160.	1.2	1
50	Atmospheric Nanoparticles and Their Impacts on Public Health. , 0, , .		25
51	The comfort parameters in indoor air of sports facilities with different ventilation regimes. , 0, , .		0
52	Traffic-Related Air Pollution: Legislation Versus Health and Environmental Effects. , 0, , .		1