Andrew A Maudsley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1270304/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A multi-institutional pilot clinical trial of spectroscopic MRI-guided radiation dose escalation for newly diagnosed glioblastoma. Neuro-Oncology Advances, 2022, 4, vdac006.	0.4	14
2	<scp>SLOW</scp> : A novel spectral editing method for wholeâ€brain <scp>MRSI</scp> at ultra high magnetic field. Magnetic Resonance in Medicine, 2022, 88, 53-70.	1.9	10
3	The Distribution of Major Brain Metabolites in Normal Adults: Short Echo Time Whole-Brain MR Spectroscopic Imaging Findings. Metabolites, 2022, 12, 543.	1.3	5
4	Advanced magnetic resonance spectroscopic neuroimaging: Experts' consensus recommendations. NMR in Biomedicine, 2021, 34, e4309.	1.6	72
5	T1â€weighted and T2â€weighted Subtraction MR Images for Glioma Visualization and Grading. Journal of Neuroimaging, 2021, 31, 124-131.	1.0	2
6	The clinical utility of proton magnetic resonance spectroscopy in traumatic brain injury: recommendations from the ENIGMA MRS working group. Brain Imaging and Behavior, 2021, 15, 504-525.	1.1	32
7	Terminology and concepts for the characterization of in vivo MR spectroscopy methods and MR spectra: Background and experts' consensus recommendations. NMR in Biomedicine, 2021, 34, e4347.	1.6	69
8	Minimum Reporting Standards for in vivo Magnetic Resonance Spectroscopy (MRSinMRS): Experts' consensus recommendations. NMR in Biomedicine, 2021, 34, e4484.	1.6	144
9	A multisite clinical trial of spectroscopic MRI-guided radiation dose escalation for newly-diagnosed glioblastomas Journal of Clinical Oncology, 2021, 39, 2018-2018.	0.8	5
10	Increased Glutamate Plus Glutamine in the Right Middle Cingulate in Early Schizophrenia but Not in Bipolar Psychosis: A Whole Brain 1H-MRS Study. Frontiers in Psychiatry, 2021, 12, 660850.	1.3	8
11	Investigating wholeâ€brain metabolite abnormalities in the chronic stages of moderate or severe traumatic brain injury. PM and R, 2021, , .	0.9	5
12	Alterations of Striato-Thalamic Metabolism in Normal Aging Human Brain—An MR Metabolic Imaging Study. Metabolites, 2021, 11, 371.	1.3	1
13	Evidence of widespread metabolite abnormalities in Myalgic encephalomyelitis/chronic fatigue syndrome: assessment with whole-brain magnetic resonance spectroscopy. Brain Imaging and Behavior, 2020, 14, 562-572.	1.1	76
14	Regional Metabolite Concentrations in Aging Human Brain: Comparison of Short-TE Whole Brain MR Spectroscopic Imaging and Single Voxel Spectroscopy atÂ3T. Clinical Neuroradiology, 2020, 30, 251-261.	1.0	17
15	Age-related Brain Metabolic Changes up to Seventh Decade in Healthy Humans. Clinical Neuroradiology, 2020, 30, 581-589.	1.0	12
16	The Association between Wholeâ€Brain MR Spectroscopy and IDH Mutation Status in Gliomas. Journal of Neuroimaging, 2020, 30, 58-64.	1.0	13
17	Repeatability and Reproducibility of in-vivo Brain Temperature Measurements. Frontiers in Human Neuroscience, 2020, 14, 598435.	1.0	14
18	Glutamatergic hypo-function in the left superior and middle temporal gyri in early schizophrenia: a data-driven three-dimensional proton spectroscopic imaging study. Neuropsychopharmacology, 2020, 45, 1851-1859.	2.8	8

#	Article	IF	CITATIONS
19	Altered neurometabolism in major depressive disorder: A whole brain 1H-magnetic resonance spectroscopic imaging study at 3T. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 101, 109916.	2.5	18
20	Effects of apodization smoothing and denoising on spectral fitting. Magnetic Resonance Imaging, 2020, 70, 108-114.	1.0	5
21	Altered Neurometabolic Profile in Early Parkinson's Disease: A Study With Short Echo-Time Whole Brain MR Spectroscopic Imaging. Frontiers in Neurology, 2019, 10, 777.	1.1	23
22	Incorporation of a spectral model in a convolutional neural network for accelerated spectral fitting. Magnetic Resonance in Medicine, 2019, 81, 3346-3357.	1.9	47
23	The Brain Imaging Collaboration Suite (BrICS): A Cloud Platform for Integrating Whole-Brain Spectroscopic MRI into the Radiation Therapy Planning Workflow. Tomography, 2019, 5, 184-191.	0.8	34
24	Methodological consensus on clinical proton MRS of the brain: Review and recommendations. Magnetic Resonance in Medicine, 2019, 82, 527-550.	1.9	280
25	Cardiovascular risks impact human brain <i>N</i> -acetylaspartate in regionally specific patterns. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25243-25249.	3.3	6
26	Threeâ€dimensional echo planar spectroscopic imaging for differentiation of true progression from pseudoprogression in patients with glioblastoma. NMR in Biomedicine, 2019, 32, e4042.	1.6	38
27	Lesion segmentation for MR spectroscopic imaging using the convolution difference method. Magnetic Resonance in Medicine, 2019, 81, 1499-1510.	1.9	2
28	Metabolic counterparts of sodium accumulation in multiple sclerosis: A whole brain ²³ Na-MRI and fast ¹ H-MRSI study. Multiple Sclerosis Journal, 2019, 25, 39-47.	1.4	14
29	A convolutional neural network to filter artifacts in spectroscopic <scp>MRI</scp> . Magnetic Resonance in Medicine, 2018, 80, 1765-1775.	1.9	67
30	Value of diffusion kurtosis imaging in assessing lowâ€grade gliomas. Journal of Magnetic Resonance Imaging, 2018, 48, 1551-1558.	1.9	23
31	Comparison of reproducibility of single voxel spectroscopy and wholeâ€brain magnetic resonance spectroscopy imaging at 3T. NMR in Biomedicine, 2018, 31, e3898.	1.6	32
32	Effects of a 72 hours fasting on brain metabolism in healthy women studied inÂvivo with magnetic resonance spectroscopic imaging. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 469-478.	2.4	12
33	Spatial Relationship of Glioma Volume Derived from ¹⁸ F-FET PET and Volumetric MR Spectroscopy Imaging: A Hybrid PET/MRI Study. Journal of Nuclear Medicine, 2018, 59, 603-609.	2.8	27
34	Spectral decomposition for resolving partial volume effects in <scp>MRSI</scp> . Magnetic Resonance in Medicine, 2018, 79, 2886-2895.	1.9	12
35	Cover Image, Volume 31, Issue 4. NMR in Biomedicine, 2018, 31, e3813.	1.6	0
36	RTHP-29. A FEASIBILITY STUDY OF RADIATION THERAPY DOSE ESCALATION GUIDED BY SPECTROSCOPIC MRI IN PATIENTS WITH GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi231-vi231.	0.6	2

#	Article	IF	CITATIONS
37	Longitudinal MR Spectroscopy Shows Altered Metabolism in Traumatic Brain Injury. Journal of Neuroimaging, 2017, 27, 562-569.	1.0	19
38	Sir Peter Mansfield, PhD. Radiology, 2017, 284, 305-306.	3.6	1
39	Effects of tissue susceptibility on brain temperature mapping. Neurolmage, 2017, 146, 1093-1101.	2.1	33
40	Association of Radiomics and Metabolic Tumor Volumes in Radiation Treatment of Glioblastoma Multiforme. International Journal of Radiation Oncology Biology Physics, 2017, 97, 586-595.	0.4	31
41	Subacute Pain after Traumatic Brain Injury Is Associated with Lower Insular N-Acetylaspartate Concentrations. Journal of Neurotrauma, 2016, 33, 1380-1389.	1.7	28
42	Metabolic voxelâ€based analysis of the complete human brain using fast 3Dâ€MRSI: Proof of concept in multiple sclerosis. Journal of Magnetic Resonance Imaging, 2016, 44, 411-419.	1.9	31
43	Phasedâ€array combination for MR spectroscopic imaging using a water reference. Magnetic Resonance in Medicine, 2016, 76, 733-741.	1.9	8
44	Physiological neuronal decline in healthy aging human brain — An in vivo study with MRI and short echo-time whole-brain 1H MR spectroscopic imaging. NeuroImage, 2016, 137, 45-51.	2.1	61
45	Detection of Normal Aging Effects on Human Brain Metabolite Concentrations and Microstructure with Whole-Brain MR Spectroscopic Imaging and Quantitative MR Imaging. American Journal of Neuroradiology, 2016, 37, 447-454.	1.2	44
46	Regional distributions of brain glutamate and glutamine in normal subjects. NMR in Biomedicine, 2016, 29, 1108-1116.	1.6	52
47	Denoising of MR spectroscopic imaging data using statistical selection of principal components. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 811-822.	1.1	13
48	Multivendor implementation and comparison of volumetric wholeâ€brain echoâ€planar MR spectroscopic imaging. Magnetic Resonance in Medicine, 2015, 74, 1209-1220.	1.9	51
49	Reproducibility and reliability of short-TE whole-brain MR spectroscopic imaging of human brain at 3T. Magnetic Resonance in Medicine, 2015, 73, 921-928.	1.9	43
50	Whole-brain quantitative mapping of metabolites using short echo three-dimensional proton MRSI. Journal of Magnetic Resonance Imaging, 2015, 42, 280-289.	1.9	36
51	Congruency of tumour volume delineated by FET PET and MRSI. EJNMMI Physics, 2015, 2, A61.	1.3	3
52	Distributions of Magnetic Resonance Diffusion and Spectroscopy Measures with Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 1056-1063.	1.7	37
53	Radiation Injury to the Normal Brain Measured by 3Dâ€Echoâ€Planar Spectroscopic Imaging and Diffusion Tensor Imaging: Initial Experience. Journal of Neuroimaging, 2015, 25, 97-104.	1.0	35
54	Association of Metabolite Concentrations and Water Diffusivity in Normal Appearing Brain Tissue with Glioma Grade. Journal of Neuroimaging, 2014, 24, 585-589.	1.0	18

#	Article	IF	CITATIONS
55	Impact of reduced <i>k</i> â€space acquisition on pathologic detectability for volumetric MR spectroscopic imaging. Journal of Magnetic Resonance Imaging, 2014, 39, 224-234.	1.9	28
56	Wholeâ€Brain Proton MR Spectroscopic Imaging in Parkinson's Disease. Journal of Neuroimaging, 2014, 24, 39-44.	1.0	34
57	Mapping of Clycine Distributions in Gliomas. American Journal of Neuroradiology, 2014, 35, S31-S36.	1.2	32
58	Volumetric Spectroscopic Imaging of Glioblastoma Multiforme Radiation Treatment Volumes. International Journal of Radiation Oncology Biology Physics, 2014, 90, 376-384.	0.4	39
59	Clinical Proton MR Spectroscopy in Central Nervous System Disorders. Radiology, 2014, 270, 658-679.	3.6	524
60	Comparison of Inter Subject Variability and Reproducibility of Whole Brain Proton Spectroscopy. PLoS ONE, 2014, 9, e115304.	1.1	20
61	Diffusion Tensor Imaging of Basal Ganglia and Thalamus in Amyotrophic Lateral Sclerosis. Journal of Neuroimaging, 2013, 23, 368-374.	1.0	26
62	Utility of multiparametric 3-T MRI for glioma characterization. Neuroradiology, 2013, 55, 603-613.	1.1	70
63	Fast and high-resolution quantitative mapping of tissue water content with full brain coverage for clinically-driven studies. Magnetic Resonance Imaging, 2013, 31, 1752-1759.	1.0	31
64	Whole-Brain Analysis of Amyotrophic Lateral Sclerosis by Using Echo-Planar Spectroscopic Imaging. Radiology, 2013, 267, 851-857.	3.6	40
65	Whole-brain magnetic resonance spectroscopic imaging measures are related to disability in ALS. Neurology, 2013, 80, 610-615.	1.5	50
66	Clinical utility of magnetic resonance spectroscopy to enhance diagnosis of HIV-associated mild neurocognitive disorder. Neuropsychiatry, 2012, 2, 379-383.	0.4	2
67	Comprehensive Evaluation of Corticospinal Tract Metabolites in Amyotrophic Lateral Sclerosis Using Whole-Brain 1H MR Spectroscopy. PLoS ONE, 2012, 7, e35607.	1.1	41
68	Associations of age, gender and body mass with ¹ H MRâ€observed brain metabolites and tissue distributions. NMR in Biomedicine, 2012, 25, 580-593.	1.6	49
69	¹ H MRS of basal ganglia and thalamus in amyotrophic lateral sclerosis. NMR in Biomedicine, 2011, 24, 1270-1276.	1.6	48
70	Reproducibility of serial wholeâ€brain MR Spectroscopic Imaging. NMR in Biomedicine, 2010, 23, 251-256.	1.6	76
71	K-Bayes Reconstruction for Perfusion MRI I: Concepts and Application. Journal of Digital Imaging, 2010, 23, 277-286.	1.6	4
72	Bayesian \$k\$-Space–Time Reconstruction of MR Spectroscopic Imaging for Enhanced Resolution. IEEE Transactions on Medical Imaging, 2010, 29, 1333-1350.	5.4	22

#	Article	IF	CITATIONS
73	Correction to "Bayesian \$k\$-Space–Time Reconstruction of MR Spectroscopic Imaging for Enhanced Resolution―[Jul 10 1333-1350. IEEE Transactions on Medical Imaging, 2010, 29, 1697-1697.	5.4	0
74	Multivariate statistical mapping of spectroscopic imaging data. Magnetic Resonance in Medicine, 2010, 63, 20-24.	1.9	9
75	Comparison of spectral fitting methods for overlapping Jâ€coupled metabolite resonances. Magnetic Resonance in Medicine, 2010, 64, 623-628.	1.9	12
76	Application of volumetric MR spectroscopic imaging for localization of neocortical epilepsy. Epilepsy Research, 2010, 88, 127-138.	0.8	33
77	Whole-Brain Proton MR Spectroscopic Imaging of Mild-to-Moderate Traumatic Brain Injury and Correlation with Neuropsychological Deficits. Journal of Neurotrauma, 2010, 27, 483-496.	1.7	119
78	A Scalable Framework For Segmenting Magnetic Resonance Images. Journal of Signal Processing Systems, 2009, 54, 183-203.	1.4	64
79	Improved Reconstruction for MR Spectroscopic Imaging. IEEE Transactions on Medical Imaging, 2007, 26, 686-695.	5.4	22
80	Correction of local B0 shifts in 3D EPSI of the human brain at 4 T. Magnetic Resonance Imaging, 2007, 25, 377-380.	1.0	12
81	GAVA: Spectral simulation for in vivo MRS applications. Journal of Magnetic Resonance, 2007, 185, 291-299.	1.2	91
82	Comprehensive processing, display and analysis forin vivo MR spectroscopic imaging. NMR in Biomedicine, 2006, 19, 492-503.	1.6	186
83	Numerical simulation of PRESS localized MR spectroscopy. Journal of Magnetic Resonance, 2005, 173, 54-63.	1.2	40
84	Detection and correction of frequency instabilities for volumetric1H echo-planar spectroscopic imaging. Magnetic Resonance in Medicine, 2005, 53, 465-469.	1.9	64
85	Observation of coupled1H metabolite resonances at long TE. Magnetic Resonance in Medicine, 2005, 53, 1283-1287.	1.9	30
86	Achieving sufficient spectral bandwidth for volumetric1H echo-planar spectroscopic imaging at 4 Tesla. Magnetic Resonance in Medicine, 2005, 54, 697-701.	1.9	20
87	Evaluation of sub-voxel registration accuracy between MRI and 3D MR spectroscopy of the brain. , 2005, , .		3
88	Evaluation of variable line-shape models and prior information in automated1H spectroscopic imaging analysis. Magnetic Resonance in Medicine, 2004, 52, 1246-1254.	1.9	24
89	Volumetric proton spectroscopic imaging of mild traumatic brain injury. American Journal of Neuroradiology, 2004, 25, 730-7.	1.2	95
90	Comparison of inversion recovery preparation schemes for lipid suppression in1H MRSI of human brain. Magnetic Resonance in Medicine, 2003, 49, 903-908.	1.9	48

#	Article	IF	CITATIONS
91	Magnetic resonance spectroscopic imaging reconstruction with deformable shape-intensity models. Magnetic Resonance in Medicine, 2003, 50, 474-482.	1.9	8
92	Improved spectral quality for 3D MR spectroscopic imaging using a high spatial resolution acquisition strategy. Magnetic Resonance Imaging, 2003, 21, 113-120.	1.0	87
93	Magnetic Resonance Spectroscopic Imaging. , 2002, , 351-378.		5
94	Reproducibility of 3D proton spectroscopy in the human brain. Magnetic Resonance in Medicine, 2002, 47, 439-446.	1.9	65
95	Multisection proton MR spectroscopy for mesial temporal lobe epilepsy. American Journal of Neuroradiology, 2002, 23, 1359-68.	1.2	40
96	Short echo time multislice proton magnetic resonance spectroscopic imaging in human brain: metabolite distributions and reliability. Magnetic Resonance Imaging, 2001, 19, 1073-1080.	1.0	71
97	Region and tissue differences of metabolites in normally aged brain using multislice 1H magnetic resonance spectroscopic imaging. Magnetic Resonance in Medicine, 2001, 45, 899-907.	1.9	182
98	Representation of strong baseline contributions in1H MR spectra. Magnetic Resonance in Medicine, 2001, 45, 966-972.	1.9	50
99	Comparison of methods for reduction of lipid contamination for in vivo proton MR spectroscopic imaging of the brain. Magnetic Resonance in Medicine, 2001, 46, 706-712.	1.9	21
100	Assessment of 3D proton MR echo-planar spectroscopic imaging using automated spectral analysis. Magnetic Resonance in Medicine, 2001, 46, 1072-1078.	1.9	94
101	Response to ?Comments on ?Confidence Images for MR Spectroscopic Imaging? by Leentje Vanhamme, Philippe Lemmerling, and Sabine Van Huffel?. Magnetic Resonance in Medicine, 2001, 46, 1256-1256.	1.9	1
102	Temporal Lobe Epilepsy: Qualitative Reading of ¹ H MR Spectroscopic Images for Presurgical Evaluation. Radiology, 2001, 218, 144-151.	3.6	20
103	Administration and1H MRS detection of histidine in human brain: Application to in vivo pH measurement. Magnetic Resonance in Medicine, 2000, 43, 665-675.	1.9	70
104	Confidence images for MR spectroscopic imaging. Magnetic Resonance in Medicine, 2000, 44, 537-545.	1.9	23
105	Proton NMR chemical shifts and coupling constants for brain metabolites. NMR in Biomedicine, 2000, 13, 129-153.	1.6	1,505
106	Short TE in vivo 1H MR spectroscopic imaging at 1.5 T: acquisition and automated spectral analysis. Magnetic Resonance Imaging, 2000, 18, 1159-1165.	1.0	44
107	Effects of age, medication, and illness duration on the N-acetyl aspartate signal of the anterior cingulate region in schizophrenia. Schizophrenia Research, 2000, 41, 389-395.	1.1	116
108	Administration and 1H MRS detection of histidine in human brain: Application to in vivo pH		1

Administration and 1H MRS det measurement. , 2000, 43, 665.

#	Article	IF	CITATIONS
109	Future prospects for in-vivo MR spectroscopy. Magnetic Resonance Materials in Physics, Biology, and Medicine, 1999, 9, 164-166.	1.1	0
110	Early development of line-scan NMR imaging. Magnetic Resonance Materials in Physics, Biology, and Medicine, 1999, 9, 100-102.	1.1	0
111	Future prospects for in-vivo MR spectroscopy. Magnetic Resonance Materials in Physics, Biology, and Medicine, 1999, 9, 164-166.	1.1	0
112	Spectral Simulations Incorporating Gradient Coherence Selection. Journal of Magnetic Resonance, 1999, 140, 146-152.	1.2	21
113	Measurement of chemical shifts and coupling constants for glutamate and glutamine. Magnetic Resonance in Medicine, 1998, 39, 1011-1013.	1.9	27
114	Multiple-echo proton spectroscopic imaging using time domain parametric spectral analysis. Magnetic Resonance in Medicine, 1998, 39, 528-538.	1.9	8
115	In-plane motion correction for MR spectroscopic imaging. Magnetic Resonance in Medicine, 1998, 39, 749-753.	1.9	11
116	Automated spectral analysis I: Formation ofa priori information by spectral simulation. Magnetic Resonance in Medicine, 1998, 40, 812-815.	1.9	73
117	Automated spectral analysis II: Application of wavelet shrinkage for characterization of non-parameterized signals. Magnetic Resonance in Medicine, 1998, 40, 816-821.	1.9	105
118	Automated spectral analysis III: Application toin Vivo proton MR Spectroscopy and spectroscopic imaging. Magnetic Resonance in Medicine, 1998, 40, 822-831.	1.9	262
119	<title>Multislice <formula><sup><roman>1</roman></sup></formula>H magnetic resonance
spectroscopic imaging: assessment of epilepsy, Alzheimer's disease, and amyotrophic lateral
sclerosis</title> . , 1998, 3337, 203.		1
120	EFFECTS OF BRAIN MEMBRANES ON 1H NUCLEAR MAGNETIC RESONANCE SIGNAL INTENSITY OF ETHANOL IN VITRO. Alcohol and Alcoholism, 1997, 32, 671-681.	0.9	18
121	Metabolic and pathological effects of temporal lobe epilepsy in rat brain detected by proton spectroscopy and imaging. Brain Research, 1997, 744, 57-67.	1.1	43
122	Effects of severe global ischemia onN-acetylaspartate and other metabolites in the rat brain. Magnetic Resonance in Medicine, 1997, 37, 851-857.	1.9	50
123	Mapping of Lactate and N-Acetyl-L-aspartate Predicts Infarction during Acute Focal Ischemia: In Vivo 1H Magnetic Resonance Spectroscopy in Rats. Neurosurgery, 1996, 38, 121-130.	0.6	72
124	Removal of lipid artifacts in1H spectroscopic imaging by data extrapolation. Magnetic Resonance in Medicine, 1996, 35, 678-687.	1.9	133
125	Metabolite1H relaxation in normal and hyponatremic brain. Magnetic Resonance in Medicine, 1996, 35, 688-696.	1.9	15
126	MR spectroscopic imaging and diffusion-weighted MRI for early detection of kainate-induced status epilepticus in the rat. Magnetic Resonance in Medicine, 1996, 36, 821-828.	1.9	65

#	Article	IF	CITATIONS
127	Comparison of <i>k</i> â€space sampling schemes for multidimensional MR spectroscopic imaging. Magnetic Resonance in Medicine, 1996, 36, 469-473.	1.9	44
128	Automated processing for proton spectroscopic imaging using water reference deconvolution. Magnetic Resonance in Medicine, 1994, 31, 589-595.	1.9	37
129	Reduced phase encoding in spectroscopic imaging. Magnetic Resonance in Medicine, 1994, 31, 645-651.	1.9	134
130	<i>N</i> -Acetylaspartate as an in vivo Marker of Neuronal Viability in Kainate-Induced Status Epilepticus: 1H Magnetic Resonance Spectroscopic Imaging. Journal of Cerebral Blood Flow and Metabolism, 1994, 14, 373-382.	2.4	120
131	Mapping of cerebral metabolites in rats by1H magnetic resonance spectroscopic imaging. Distribution of metabolites in normal brain and postmortem changes. NMR in Biomedicine, 1993, 6, 311-317.	1.6	17
132	Neuron loss localizes human temporal lobe epilepsy by in vivo proton magnetic resonance spectroscopic imaging. Annals of Neurology, 1993, 34, 788-794.	2.8	207
133	Elevated Lactate and Alkalosis in Chronic Human Brain Infarction Observed by ¹ H and ³¹ P MR Spectroscopic Imaging. Journal of Cerebral Blood Flow and Metabolism, 1992, 12, 734-744.	2.4	96
134	Phosphorus-31 MR spectroscopic imaging (MRSI) of normal and pathological human brains. Magnetic Resonance Imaging, 1992, 10, 227-243.	1.0	70
135	Phosphorus-31 magnetic resonance metabolite imaging in the human body. Magnetic Resonance Imaging, 1992, 10, 245-256.	1.0	14
136	3D phase encoding 1H spectroscopic imaging of human brain. Magnetic Resonance Imaging, 1992, 10, 315-319.	1.0	88
137	Clinical magnetic resonance spectroscopy of brain, heart, liver, kidney, and cancer. A quantitative approach. NMR in Biomedicine, 1989, 2, 290-297.	1.6	30
138	Sodium nuclear magnetic resonance imaging of myocardial tissue of dogs after coronary artery occlusion and reperfusion. Journal of the American College of Cardiology, 1986, 7, 573-579.	1.2	50
139	In Vivo NMR Imaging of Sodium-23 in the Human Head. Journal of Computer Assisted Tomography, 1985, 9, 1-7.	0.5	153