Christophe Detavernier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1270220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma-enhanced atomic layer deposition of nickel and cobalt phosphate for lithium ion batteries. Dalton Transactions, 2022, 51, 2059-2067.	1.6	3
2	Surface reactions between LiHMDS, TMA and TMP leading to deposition of amorphous lithium phosphate. Journal of Materials Chemistry A, 2022, 10, 3543-3551.	5.2	0
3	Atomic layer deposition of ternary ruthenates by combining metalorganic precursors with RuO ₄ as the co-reactant. Dalton Transactions, 2022, 51, 10721-10727.	1.6	3
4	Selective Vapor-Phase Doping of Pt Nanoparticles into Phase-Controlled Nanoalloys. Journal of Physical Chemistry C, 2022, 126, 1426-1438.	1.5	4
5	Aligning time-resolved kinetics (TAP) and surface spectroscopy (AP-XPS) for a more comprehensive understanding of ALD-derived 2D and 3D model catalysts Faraday Discussions, 2022, , .	1.6	0
6	Atomic layer deposition of metal phosphates. Applied Physics Reviews, 2022, 9, .	5.5	7
7	Colloidal III–V Quantum Dot Photodiodes for Shortâ€Wave Infrared Photodetection. Advanced Science, 2022, 9, e2200844.	5.6	31
8	Titanium Carboxylate Molecular Layer Deposited Hybrid Films as Protective Coatings for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 24908-24918.	4.0	4
9	Shuffling Atomic Layer Deposition Gas Sequences to Modulate Bimetallic Thin Films and Nanoparticle Properties. Chemistry of Materials, 2022, 34, 6142-6154.	3.2	3
10	Properties of ultrathin molybdenum films for interconnect applications. Materialia, 2022, 24, 101511.	1.3	15
11	Tuning size and coverage of Pd nanoparticles using atomic layer deposition. Applied Surface Science, 2021, 539, 148238.	3.1	4
12	Converting molecular layer deposited alucone films into Al ₂ O ₃ /alucone hybrid multilayers by plasma densification. Dalton Transactions, 2021, 50, 1224-1232.	1.6	6
13	Impact of changes in bond structure on ovonic threshold switching behaviour in GeSe ₂ . Journal of Materials Chemistry C, 2021, 9, 117-126.	2.7	6
14	Covalent graphite modification by low-temperature photocatalytic oxidation using a titanium dioxide thin film prepared by atomic layer deposition. Catalysis Science and Technology, 2021, 11, 6724-6731.	2.1	1
15	ALD Pt nanoparticles and thin-film coatings enhancing the stability and performance of silicon photocathodes for solar water splitting. Sustainable Energy and Fuels, 2021, 5, 3115-3123.	2.5	2
16	Emergence of Metallic Conductivity in Ordered One-Dimensional Coordination Polymer Thin Films upon Reductive Doping. ACS Applied Materials & Interfaces, 2021, 13, 10249-10256.	4.0	5
17	Acid–Base Mediated Ligand Exchange on Near-Infrared Absorbing, Indium-Based III–V Colloidal Quantum Dots. Journal of the American Chemical Society, 2021, 143, 4290-4301.	6.6	38
18	Waveguideâ€Coupled Colloidal Quantum Dot Light Emitting Diodes and Detectors on a Silicon Nitride Platform. Laser and Photonics Reviews, 2021, 15, 2000230.	4.4	16

#	Article	IF	CITATIONS
19	U(Mo) grain refinement induced by irradiation with high energy iodine. Journal of Nuclear Materials, 2021, 548, 152850.	1.3	4
20	Plasma enhanced atomic layer deposition of a (nitrogen doped) Ti phosphate coating for improved energy storage in Li-ion batteries. Journal of Power Sources, 2021, 497, 229866.	4.0	8
21	Atomic Layer Deposition on Polymer Thin Films: On the Role of Precursor Infiltration and Reactivity. ACS Applied Materials & Interfaces, 2021, 13, 46151-46163.	4.0	21
22	Plasma-enhanced atomic layer deposition: Correlating O2 plasma parameters and species to blister formation and conformal film growth. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	4
23	Ion beam modification of the Ni-Si solid-phase reaction: The influence of substrate damage and nitrogen impurities introduced by ion implantation. Journal Physics D: Applied Physics, 2021, 54, 015307.	1.3	6
24	An IR Spectroscopy Study of the Degradation of Surface Bound Azido-Groups in High Vacuum. Langmuir, 2021, 37, 12608-12615.	1.6	2
25	Tuning of the thermal stability and ovonic threshold switching properties of GeSe with metallic and non-metallic alloying elements. Journal of Applied Physics, 2021, 130, .	1.1	8
26	Controlled synthesis of Fe–Pt nanoalloys using atomic layer deposition. Nanotechnology, 2021, 32, 095602.	1.3	7
27	A limitation map of performance for porous electrodes in lithium-ion batteries. IScience, 2021, 24, 103496.	1.9	5
28	Thermal and Plasma-Enhanced Atomic Layer Deposition of Yttrium Oxide Films and the Properties of Water Wettability. ACS Applied Materials & Interfaces, 2020, 12, 3179-3187.	4.0	14
29	Atomic Layer Deposition of Indiumâ€Tinâ€Oxide as Multifunctional Coatings on V ₂ O ₅ Thinâ€Film Model Electrode for Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2020, 7, 2001022.	1.9	15
30	FeO controls the sintering of iron-based oxygen carriers in chemical looping CO2 conversion. Journal of CO2 Utilization, 2020, 40, 101216.	3.3	26
31	A Secondary Reaction Pathway for the Alumina Atomic Layer Deposition Process with Trimethylaluminum and Water, Revealed by Full-Range, Time-Resolved In Situ Mass Spectrometry. Journal of Physical Chemistry C, 2020, 124, 26443-26454.	1.5	8
32	Surface mobility and impact of precursor dosing during atomic layer deposition of platinum: <i>in situ</i> monitoring of nucleation and island growth. Physical Chemistry Chemical Physics, 2020, 22, 24917-24933.	1.3	19
33	Designing Nanoparticles and Nanoalloys for Gas-Phase Catalysis with Controlled Surface Reactivity Using Colloidal Synthesis and Atomic Layer Deposition. Molecules, 2020, 25, 3735.	1.7	10
34	Hierarchical Fe-modified MgAl ₂ O ₄ as a Ni-catalyst support for methane dry reforming. Catalysis Science and Technology, 2020, 10, 6987-7001.	2.1	22
35	Atomic Layer Deposition of SnO2-Based Composite Anodes for Thin-Film Lithium-Ion Batteries. Frontiers in Energy Research, 2020, 8, .	1.2	11
36	Reaction Pathways for Atomic Layer Deposition with Lithium Hexamethyl Disilazide, Trimethyl Phosphate, and Oxygen Plasma. Journal of Physical Chemistry C, 2020, 124, 27829-27839.	1.5	5

#	Article	IF	CITATIONS
37	Molecular Layer Deposition of "Magnesiconeâ€ , a Magnesium-based Hybrid Material. Chemistry of Materials, 2020, 32, 4451-4466.	3.2	17
38	Atomic Layer Deposition of Nitrogen-Doped Al Phosphate Coatings for Li-Ion Battery Applications. ACS Applied Materials & Interfaces, 2020, 12, 25949-25960.	4.0	14
39	Reaction mechanism of the Me ₃ AuPMe ₃ –H ₂ plasma-enhanced ALD process. Physical Chemistry Chemical Physics, 2020, 22, 11903-11914.	1.3	2
40	Formation and preferential orientation of Au-free Al/Ti-based ohmic contacts on different hexagonal nitride-based heterostructures. Journal of Applied Physics, 2020, 127, 215701.	1.1	4
41	A liquid alkoxide precursor for the atomic layer deposition of aluminum oxide films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	3
42	Boosting Roomâ€Temperature Magnetoâ€Ionics in a Nonâ€Magnetic Oxide Semiconductor. Advanced Functional Materials, 2020, 30, 2003704.	7.8	18
43	Plasmonic gold-embedded TiO2 thin films as photocatalytic self-cleaning coatings. Applied Catalysis B: Environmental, 2020, 267, 118654.	10.8	61
44	Creation of gallium acid and platinum metal sites in bifunctional zeolite hydroisomerization and hydrocracking catalysts by atomic layer deposition. Catalysis Science and Technology, 2020, 10, 1778-1788.	2.1	13
45	Use of Neutron Absorbers to Influence the Neutron Transmutation Doping Process in Silicon. Nuclear Technology, 2020, 206, 758-765.	0.7	0
46	Ovonic Thresholdâ€6witching Ge _{<i>x</i>} Se _{<i>y</i>} Chalcogenide Materials: Stoichiometry, Trap Nature, and Material Relaxation from First Principles. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900672.	1.2	45
47	<i>In situ</i> study of the thermal stability of supported Pt nanoparticles and their stabilization <i>via</i> atomic layer deposition overcoating. Nanoscale, 2020, 12, 11684-11693.	2.8	8
48	Study of the surface species during thermal and plasma-enhanced atomic layer deposition of titanium oxide films using <i>in situ</i> IR-spectroscopy and <i>in vacuo</i> X-ray photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 9262-9271.	1.3	18
49	The co-reactant role during plasma enhanced atomic layer deposition of palladium. Physical Chemistry Chemical Physics, 2020, 22, 9124-9136.	1.3	6
50	Atomic Layer Deposition of Localized Boron- and Hydrogen-Doped Aluminum Oxide Using Trimethyl Borate as a Dopant Precursor. Chemistry of Materials, 2020, 32, 4152-4165.	3.2	2
51	Mitigation of photon background in nanoplasmonic all-on-chip Raman sensors. Optics Express, 2020, 28, 33564.	1.7	8
52	(Invited) MLD of Metal-Organic Thin Films with Tunable Conductance for Neuromorphic Computing Applications. ECS Meeting Abstracts, 2020, MA2020-02, 1683-1683.	0.0	0
53	Aluminum tri-isopropoxide as an alternative precursor for atomic layer deposition of aluminum oxide thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	8
54	Stabilizing Fluoride Phosphors: Surface Modification by Atomic Layer Deposition. Chemistry of Materials, 2019, 31, 7192-7202.	3.2	42

#	Article	IF	CITATIONS
55	Atomic layer deposition of ZnO–SnO2 composite thin film: The influence of structure, composition and crystallinity on lithium-ion battery performance. Electrochimica Acta, 2019, 320, 134604.	2.6	48
56	In Situ Photoluminescence of Colloidal Quantum Dots During Gas Exposure—The Role of Water and Reactive Atomic Layer Deposition Precursors. ACS Applied Materials & Interfaces, 2019, 11, 26277-26287.	4.0	9
57	Setting Carriers Free: Healing Faulty Interfaces Promotes Delocalization and Transport in Nanocrystal Solids. ACS Nano, 2019, 13, 12774-12786.	7.3	22
58	Effectiveness of Ligand Denticity-Dependent Oxidation Protection in Copper MOD Inks. Langmuir, 2019, 35, 16101-16110.	1.6	7
59	Switchable Piezoresistive SmS Thin Films on Large Area. Sensors, 2019, 19, 4390.	2.1	8
60	Atomic layer deposition of thin films as model electrodes: A case study of the synergistic effect in Fe2O3-SnO2. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 050904.	0.9	5
61	Plasma-Enhanced Atomic Layer Deposition of Nanostructured Gold Near Room Temperature. ACS Applied Materials & Interfaces, 2019, 11, 37229-37238.	4.0	12
62	CO2 sorption properties of Li4SiO4 with a Li2ZrO3 coating. Journal of CO2 Utilization, 2019, 34, 688-699.	3.3	16
63	Corrosion protection of Cu by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 060902.	0.9	7
64	Impurity-enhanced solid-state amorphization: the Ni–Si thin film reaction altered by nitrogen. Journal Physics D: Applied Physics, 2019, 52, 145301.	1.3	8
65	Electron Transfer and Near-Field Mechanisms in Plasmonic Gold-Nanoparticle-Modified TiO ₂ Photocatalytic Systems. ACS Applied Nano Materials, 2019, 2, 4067-4074.	2.4	34
66	Redox Layer Deposition of Thin Films of MnO ₂ on Nanostructured Substrates from Aqueous Solutions. Chemistry of Materials, 2019, 31, 4805-4816.	3.2	18
67	Atomic layer deposition of vanadium oxides: process and application review. Materials Today Chemistry, 2019, 12, 396-423.	1.7	46
68	Fe ₂ O ₃ –MgAl ₂ O ₄ for CO Production from CO ₂ : Mössbauer Spectroscopy and in Situ X-ray Diffraction. ACS Sustainable Chemistry and Engineering, 2019, 7, 9553-9565.	3.2	17
69	Selective electroless deposition of cobalt using amino-terminated SAMs. Journal of Materials Chemistry C, 2019, 7, 4392-4402.	2.7	21
70	Formation and Functioning of Bimetallic Nanocatalysts: The Power of Xâ€ray Probes. Angewandte Chemie - International Edition, 2019, 58, 13220-13230.	7.2	31
71	Photocatalytic Lithography with Atomic Layer–Deposited TiO ₂ Films to Tailor Biointerface Properties. Advanced Materials Interfaces, 2019, 6, 1900035.	1.9	7
72	Formation and Functioning of Bimetallic Nanocatalysts: The Power of Xâ€ray Probes. Angewandte Chemie, 2019, 131, 13354-13364.	1.6	6

#	Article	IF	CITATIONS
73	Nucleation Enhancement and Area-Selective Atomic Layer Deposition of Ruthenium Using RuO ₄ and H ₂ Gas. Chemistry of Materials, 2019, 31, 1491-1499.	3.2	36
74	Plasma enhanced atomic layer deposition of gallium sulfide thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	16
75	Ligand Binding to Copper Nanocrystals: Amines and Carboxylic Acids and the Role of Surface Oxides. Chemistry of Materials, 2019, 31, 2058-2067.	3.2	24
76	Ultra-thin sub-10 nm Ga2O3-WO3 heterostructures developed by atomic layer deposition for sensitive and selective C2H5OH detection on ppm level. Sensors and Actuators B: Chemical, 2019, 287, 147-156.	4.0	41
77	Chemical and Structural Configuration of Pt-Doped Metal Oxide Thin Films Prepared by Atomic Layer Deposition. Chemistry of Materials, 2019, 31, 9673-9683.	3.2	8
78	Assessing stability of metal tellurides as alternative photomask materials for extreme ultraviolet lithography. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 061607.	0.6	8
79	Bifunctional earth-abundant phosphate/phosphide catalysts prepared <i>via</i> atomic layer deposition for electrocatalytic water splitting. Nanoscale Advances, 2019, 1, 4166-4172.	2.2	24
80	Micro-Transfer-Printing of Al ₂ O ₃ -Capped Short-Wave-Infrared PbS Quantum Dot Photoconductors. ACS Applied Nano Materials, 2019, 2, 299-306.	2.4	14
81	Near Room Temperature PE-ALD of Nanostructured Gold for Enhanced Raman Scattering. ECS Meeting Abstracts, 2019, , .	0.0	0
82	Impact of Atomic Layer Deposition on the Photoluminescence of Colloidal Quantum Dots. ECS Meeting Abstracts, 2019, , .	0.0	0
83	(Invited) A Tutorial on Atomic Layer Deposition and Its Application in Lithium-Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
84	(Invited) ALD and MLD of Functional Thin-Film Coatings for Enhanced Performance in Li-Ion and Li-Metal Solid-State Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
85	Catalyst-assisted chemical looping auto-thermal dry reforming: Spatial structuring effects on process efficiency. Applied Catalysis B: Environmental, 2018, 231, 123-136.	10.8	48
86	Controlling the formation and stability of ultra-thin nickel silicides - An alloying strategy for preventing agglomeration. Journal of Applied Physics, 2018, 123, .	1.1	21
87	The transformation behaviour of "aluconesâ€; deposited by molecular layer deposition, in nanoporous Al ₂ O ₃ layers. Dalton Transactions, 2018, 47, 5860-5870.	1.6	40
88	Influence of the Chalcogen Element on the Filament Stability in CuIn(Te,Se,S) ₂ /Al ₂ O ₃ Filamentary Switching Devices. ACS Applied Materials & Interfaces, 2018, 10, 14835-14842.	4.0	4
89	TiO ₂ -coated luminescent porous silicon micro-particles as a promising system for nanomedicine. Journal of Materials Chemistry B, 2018, 6, 1815-1824.	2.9	15
90	Plasma enhanced atomic layer deposition of aluminum sulfide thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	22

#	Article	IF	CITATIONS
91	PdZn nanoparticle catalyst formation for ethanol dehydrogenation: Active metal impregnation vs incorporation. Applied Catalysis A: General, 2018, 555, 12-19.	2.2	16
92	Bifunctional Co- and Ni- ferrites for catalyst-assisted chemical looping with alcohols. Applied Catalysis B: Environmental, 2018, 222, 59-72.	10.8	36
93	Surface species during ALD of platinum observed with <i>in situ</i> reflection IR spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 25343-25356.	1.3	20
94	Voltage-Controlled ON–OFF Ferromagnetism at Room Temperature in a Single Metal Oxide Film. ACS Nano, 2018, 12, 10291-10300.	7.3	57
95	Axiotaxy and epitaxial textures in C54-TiSi ₂ films on Si(0 0 1) and Si(1 1 1) subst Physics D: Applied Physics, 2018, 51, 445302.	ates. Jourr 1.3	nal
96	ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy. APL Photonics, 2018, 3, .	3.0	35
97	Effect of thermal annealing and chemical treatments on secondary electron emission properties of atomic layer deposited MgO. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 06A102.	0.9	9
98	Fe-Containing Magnesium Aluminate Support for Stability and Carbon Control during Methane Reforming. ACS Catalysis, 2018, 8, 5983-5995.	5.5	66
99	Oxidation barrier of Cu and Fe powder by Atomic Layer Deposition. Surface and Coatings Technology, 2018, 349, 1032-1041.	2.2	12
100	Kinetics of Lifetime Changes in Bimetallic Nanocatalysts Revealed by Quick Xâ€ray Absorption Spectroscopy. Angewandte Chemie - International Edition, 2018, 57, 12430-12434.	7.2	15
101	Red Mn ⁴⁺ -Doped Fluoride Phosphors: Why Purity Matters. ACS Applied Materials & Interfaces, 2018, 10, 18845-18856.	4.0	74
102	The influence of alloying on the phase formation sequence of ultra-thin nickel silicide films and on the inheritance of texture. Journal of Applied Physics, 2018, 123, 185302.	1.1	14
103	Kinetics of Lifetime Changes in Bimetallic Nanocatalysts Revealed by Quick Xâ€ray Absorption Spectroscopy. Angewandte Chemie, 2018, 130, 12610-12614.	1.6	2
104	Annealing of thin "Tincone―films, a tin-based hybrid material deposited by molecular layer deposition, in reducing, inert, and oxidizing atmospheres. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 051506.	0.9	16
105	Pore pressure estimation in irradiated UMo. Journal of Nuclear Materials, 2018, 510, 472-483.	1.3	22
106	(Invited) Atomic Layer Deposition for Interface Engineering of (Thin-Film) Lithium-Ion Battery. ECS Meeting Abstracts, 2018, , .	0.0	0
107	Synthesis of 3D Porous Nanostructured Platinum Using Atomic Layer Deposition. ECS Meeting Abstracts, 2018, , .	0.0	0
108	Inherent Area-Selective Growth and Nucleation Enhancement during Ru ALD Using the RuO ₄ -Precursor and H ₂ -Gas. ECS Meeting Abstracts, 2018, MA2018-02, 984-984.	0.0	1

#	Article	IF	CITATIONS
109	(Invited) Red Fluoride Phosphors: A Story of Reliability. ECS Meeting Abstracts, 2018, , .	0.0	0
110	Electrodeposition of Adherent MnO2 Films with Optimized Current Collector Interface for 3D Li-Ion Electrodes. ECS Meeting Abstracts, 2018, , .	0.0	0
111	Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis. Applied Catalysis B: Environmental, 2017, 200, 31-38.	10.8	48
112	Atomic layer deposition-enabled single layer of tungsten trioxide across a large area. Applied Materials Today, 2017, 6, 44-53.	2.3	52
113	Heterogeneous TiO ₂ /V ₂ O ₅ /Carbon Nanotube Electrodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 8055-8064.	4.0	32
114	Controlling the stability of a Fe–Ni reforming catalyst: Structural organization of the active components. Applied Catalysis B: Environmental, 2017, 209, 405-416.	10.8	89
115	The role of composition and microstructure in Ni–W silicide formation and low temperature epitaxial NiSi2 growth by premixing Si. Journal Physics D: Applied Physics, 2017, 50, 065303.	1.3	3
116	Molecular layer deposition of "vanadiconeâ€; a vanadium-based hybrid material, as an electrode for lithium-ion batteries. Dalton Transactions, 2017, 46, 4542-4553.	1.6	42
117	Monte Carlo simulations of atomic layer deposition on 3D large surface area structures: Required precursor exposure for pillar- versus hole-type structures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	24
118	Amorphous and Crystalline Vanadium Oxides as High-Energy and High-Power Cathodes for Three-Dimensional Thin-Film Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 13121-13131.	4.0	73
119	Size- and composition-controlled Pt–Sn bimetallic nanoparticles prepared by atomic layer deposition. RSC Advances, 2017, 7, 20201-20205.	1.7	12
120	The Influence of Ultrathin Amorphous ALD Alumina and Titania on the Rate Capability of Anatase TiO ₂ and LiMn ₂ O ₄ Lithium Ion Battery Electrodes. Advanced Materials Interfaces, 2017, 4, 1601237.	1.9	50
121	Ternary silicide formation from Ni-Pt, Ni-Pd and Pt-Pd alloys on Si(100): Nucleation and solid solubility of the monosilicides. Acta Materialia, 2017, 130, 19-27.	3.8	9
122	Plasma enhanced atomic layer deposition of zinc sulfide thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	21
123	K ₂ MnF ₆ as a precursor for saturated red fluoride phosphors: the struggle for structural stability. Journal of Materials Chemistry C, 2017, 5, 10761-10769.	2.7	34
124	(Invited) Atomic Layer Deposition of Nanoalloys of Noble and Non-Noble Metals. ECS Transactions, 2017, 80, 97-106.	0.3	1
125	Independent tuning of size and coverage of supported Pt nanoparticles using atomic layer deposition. Nature Communications, 2017, 8, 1074.	5.8	95
126	Sensing the framework state and guest molecules in MIL-53(Al) via the electron paramagnetic resonance spectrum of V ^{IV} dopant ions. Physical Chemistry Chemical Physics, 2017, 19, 24545-24554.	1.3	24

#	Article	IF	CITATIONS
127	Key role of surface oxidation and reduction processes in the coarsening of Pt nanoparticles. Nanoscale, 2017, 9, 13159-13170.	2.8	25
128	Plasma-enhanced atomic layer deposition of vanadium phosphate as a lithium-ion battery electrode material. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	12
129	Formation of ultrathin Ni germanides: solid-phase reaction, morphology and texture. Journal Physics D: Applied Physics, 2017, 50, 455301.	1.3	6
130	A USB-controlled potentiostat/galvanostat for thin-film battery characterization. HardwareX, 2017, 2, 34-49.	1.1	76
131	Axiotaxy in oxide heterostructures: Preferential orientation of BaCeO3 nanoparticles embedded in superconducting YBa2Cu3O7â^² thin films. Thin Solid Films, 2017, 638, 105-113.	0.8	3
132	Formation and stability of an active PdZn nanoparticle catalyst on a hydrotalcite-based support for ethanol dehydrogenation. Catalysis Science and Technology, 2017, 7, 3715-3727.	2.1	12
133	Plasma-Enhanced Atomic Layer Deposition of Silver Using Ag(fod)(PEt ₃) and NH ₃ -Plasma. Chemistry of Materials, 2017, 29, 7114-7121.	3.2	20
134	Electrodeposition of Adherent Submicron to Micron Thick Manganese Dioxide Films with Optimized Current Collector Interface for 3D Li-Ion Electrodes. Journal of the Electrochemical Society, 2017, 164, D954-D963.	1.3	14
135	Plasmonic Near-Field Localization of Silver Core–Shell Nanoparticle Assemblies via Wet Chemistry Nanogap Engineering. ACS Applied Materials & Interfaces, 2017, 9, 41577-41585.	4.0	34
136	Microwave induced "egg yolk―structure in Cr/V-MIL-53. Chemical Communications, 2017, 53, 8478-8481.	2.2	33
137	3D porous nanostructured platinum prepared using atomic layer deposition. Journal of Materials Chemistry A, 2017, 5, 19007-19016.	5.2	10
138	A core-shell structured Fe 2 O 3 /ZrO 2 @ZrO 2 nanomaterial with enhanced redox activity and stability for CO 2 conversion. Journal of CO2 Utilization, 2017, 17, 20-31.	3.3	41
139	Tuning the switching behavior of conductive-bridge resistive memory by the modulation of the cation-supplier alloys. Microelectronic Engineering, 2017, 167, 47-51.	1.1	8
140	Plasma-enhanced atomic layer deposition of titanium phosphate as an electrode for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 330-338.	5.2	31
141	Perpendicular magnetic anisotropy of CoFeBTa bilayers on ALD HfO2. AIP Advances, 2017, 7, 055933.	0.6	8
142	Doped GeSe materials for selector applications. , 2017, , .		18
143	Wet-Chemical Synthesis of 3D Stacked Thin Film Metal-Oxides for All-Solid-State Li-Ion Batteries. Materials, 2017, 10, 1072.	1.3	0
144	(Invited) Ultrathin Epitaxial Silicides for Semiconductor Contacts. ECS Meeting Abstracts, 2017, , .	0.0	0

#	Article	IF	CITATIONS
145	Molecular Layer Deposition for Applications in Lithium-Ion Batteries. ECS Meeting Abstracts, 2017, , .	0.0	0
146	(Invited) Atomic Layer Deposition of Nanoalloys of Noble and Non-Noble Metals. ECS Meeting Abstracts, 2017, , .	0.0	0
147	Conformal Vanadium Oxides Beyond Crystalline V2O5 As High Energy Density 3D Thin-Film Electrodes for Lithium-Ion Batteries. ECS Meeting Abstracts, 2017, , .	0.0	0
148	Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst. Nanomaterials, 2016, 6, 45.	1.9	38
149	Direct Imaging of ALD Deposited Pt Nanoclusters inside the Giant Pores of MILâ€101. Particle and Particle Systems Characterization, 2016, 33, 382-387.	1.2	28
150	<i>In Situ</i> Electron Paramagnetic Resonance and X-ray Diffraction Monitoring of Temperature-Induced Breathing and Related Structural Transformations in Activated V-Doped MIL-53(Al). Journal of Physical Chemistry C, 2016, 120, 17400-17407.	1.5	26
151	Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices. ACS Nano, 2016, 10, 6861-6870.	7.3	49
152	Mobile setup for synchrotron based <i>in situ</i> characterization during thermal and plasma-enhanced atomic layer deposition. Review of Scientific Instruments, 2016, 87, 113905.	0.6	21
153	Phase formation and texture of thin nickel germanides on Ge(001) and Ge(111). Journal of Applied Physics, 2016, 119, .	1.1	16
154	Anisotropic thermal expansion of Ni, Pd and Pt germanides and silicides. Journal Physics D: Applied Physics, 2016, 49, 275307.	1.3	4
155	Texture in thin film silicides and germanides: A review. Applied Physics Reviews, 2016, 3, 031302.	5.5	30
156	Atomic layer deposition of vanadium oxides for thin-film lithium-ion battery applications. RSC Advances, 2016, 6, 114658-114665.	1.7	27
157	Study of amorphous Cu–Te–Si thin films showing high thermal stability for application as a cation supply layer in conductive bridge random access memory devices. RSC Advances, 2016, 6, 32106-32114.	1.7	3
158	Plasma-enhanced atomic layer deposition of zinc phosphate. Journal of Non-Crystalline Solids, 2016, 444, 43-48.	1.5	17
159	Plasma-Enhanced Atomic Layer Deposition of Iron Phosphate as a Positive Electrode for 3D Lithium-Ion Microbatteries. Chemistry of Materials, 2016, 28, 3435-3445.	3.2	44
160	Deactivation Study of Fe ₂ O ₃ –CeO ₂ during Redox Cycles for CO Production from CO ₂ . Industrial & Engineering Chemistry Research, 2016, 55, 5911-5922.	1.8	56
161	Hydroisomerization and hydrocracking activity enhancement of a hierarchical ZSM-5 zeolite catalyst via atomic layer deposition of aluminium. Catalysis Science and Technology, 2016, 6, 6177-6186.	2.1	15
162	Atomic Layer Deposition Route To Tailor Nanoalloys of Noble and Non-noble Metals. ACS Nano, 2016, 10, 8770-8777.	7.3	44

#	Article	IF	CITATIONS
163	Super-dry reforming of methane intensifies CO ₂ utilization via Le Chatelier's principle. Science, 2016, 354, 449-452.	6.0	348
164	A Case Study of ALD Encapsulation of Quantum Dots: Embedding Supported CdSe/CdS/ZnS Quantum Dots in a ZnO Matrix. Journal of Physical Chemistry C, 2016, 120, 18039-18045.	1.5	33
165	Electro-precipitation via oxygen reduction: a new technique for thin film manganese oxide deposition. Journal of Materials Chemistry A, 2016, 4, 13555-13562.	5.2	2
166	Effect of annealing atmosphere on LiMn ₂ O ₄ for thin film Li-ion batteries from aqueous chemical solution deposition. Journal of Materials Chemistry A, 2016, 4, 18457-18469.	5.2	20
167	Manganese oxide films with controlled oxidation state for water splitting devices through a combination of atomic layer deposition and post-deposition annealing. RSC Advances, 2016, 6, 98337-98343.	1.7	44
168	Kinetics of Multiâ€Step Redox Processes by Timeâ€Resolved In Situ Xâ€ray Diffraction. Chemie-Ingenieur-Technik, 2016, 88, 1684-1692.	0.4	8
169	Visualization and classification of epitaxial alignment at hetero-phase boundaries. Thin Solid Films, 2016, 599, 104-112.	0.8	9
170	Molecular layer deposition of "titaniconeâ€; a titanium-based hybrid material, as an electrode for lithium-ion batteries. Dalton Transactions, 2016, 45, 1176-1184.	1.6	45
171	One-pot synthesis of Pt catalysts based on layered double hydroxides: an application in propane dehydrogenation. Catalysis Science and Technology, 2016, 6, 1863-1869.	2.1	19
172	Se-containing inks for the formation of CuInSe2 films without gas-phase selenization. Solar Energy Materials and Solar Cells, 2016, 145, 126-133.	3.0	9
173	Understanding the Dual Nature of the Filament Dissolution in Conductive Bridging Devices. Journal of Physical Chemistry Letters, 2015, 6, 1919-1924.	2.1	61
174	Conductive filaments multiplicity as a variability factor in CBRAM. , 2015, , .		8
175	Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitry. Optics Letters, 2015, 40, 5371.	1.7	27
176	Influence of alloying the copper supply layer on the retention of CBRAM. , 2015, , .		4
177	Modification of Ultra Low-k Dielectric Films by O ₂ and CO ₂ Plasmas. ECS Journal of Solid State Science and Technology, 2015, 4, N3048-N3057.	0.9	5
178	Stuffing-enabled surface confinement of silanes used as sealing agents on CF4 plasma-exposed 2.0 p-OSG films. Microelectronic Engineering, 2015, 137, 70-74.	1.1	7
179	Fuel swelling and interaction layer formation in the SELENIUM Si and ZrN coated U(Mo) dispersion fuel plates irradiated at high power in BR2. Journal of Nuclear Materials, 2015, 458, 380-393.	1.3	41
180	Amorphous and perovskite Li3xLa(2/3)â^'xTiO3 (thin) films via chemical solution deposition: solid electrolytes for all-solid-state Li-ion batteries. Journal of Sol-Gel Science and Technology, 2015, 73, 536-543.	1.1	14

#	Article	IF	CITATIONS
181	Deposition of MnO Anode and MnO ₂ Cathode Thin Films by Plasma Enhanced Atomic Layer Deposition Using the Mn(thd) ₃ Precursor. Chemistry of Materials, 2015, 27, 3628-3635.	3.2	40
182	Low Temperature Atomic Layer Deposition of Crystalline In ₂ O ₃ Films. Journal of Physical Chemistry C, 2015, 119, 11786-11791.	1.5	37
183	Combinatorial Study of Ag–Te Thin Films and Their Application as Cation Supply Layer in CBRAM Cells. ACS Combinatorial Science, 2015, 17, 334-340.	3.8	24
184	In situ X-ray diffraction study of the controlled oxidation and reduction in the V–O system for the synthesis of VO ₂ and V ₂ O ₃ thin films. Journal of Materials Chemistry C, 2015, 3, 11357-11365.	2.7	55
185	Near room temperature plasma enhanced atomic layer deposition of ruthenium using the RuO ₄ -precursor and H ₂ -plasma. Journal of Materials Chemistry C, 2015, 3, 4848-4851.	2.7	19
186	Improved thermal stability and retention properties of Cu–Te based CBRAM by Ge alloying. Journal of Materials Chemistry C, 2015, 3, 12469-12476.	2.7	15
187	Metalâ€Insulator Transition in ALD VO ₂ Ultrathin Films and Nanoparticles: Morphological Control. Advanced Functional Materials, 2015, 25, 679-686.	7.8	70
188	Porous nanostructured metal oxides synthesized through atomic layer deposition on a carbonaceous template followed by calcination. Journal of Materials Chemistry A, 2015, 3, 2642-2649.	5.2	25
189	Atomic layer deposition of ruthenium at 100 °C using the RuO ₄ -precursor and H ₂ . Journal of Materials Chemistry C, 2015, 3, 132-137.	2.7	35
190	Catalyst-assisted chemical looping for CO2 conversion to CO. Applied Catalysis B: Environmental, 2015, 164, 184-191.	10.8	110
191	In Situ IR Spectroscopic Investigation of Alumina ALD on Porous Silica Films: Thermal versus Plasma-Enhanced ALD. Journal of Physical Chemistry C, 2014, 118, 29854-29859.	1.5	28
192	Plasma Enhanced Atomic Layer Deposition on Powders. ECS Transactions, 2014, 64, 51-62.	0.3	5
193	Progressive vs. abrupt reset behavior in conductive bridging devices: A C-AFM tomography study. , 2014, , .		19
194	Magnetic characterization and electrical field-induced switching of magnetite thin films synthesized by atomic layer deposition and subsequent thermal reduction. Journal Physics D: Applied Physics, 2014, 47, 485001.	1.3	19
195	Atomic Layer Deposition of Aluminum Phosphate Based on the Plasma Polymerization of Trimethyl Phosphate. Chemistry of Materials, 2014, 26, 6863-6871.	3.2	37
196	On the formation and structural properties of hexagonal rare earth (Y, Gd, Dy, Er and Yb) disilicide thin films. Journal of Alloys and Compounds, 2014, 611, 149-156.	2.8	7
197	Formation and texture of palladium germanides studied by in situ X-ray diffraction and pole figure measurements. Thin Solid Films, 2014, 551, 86-91.	0.8	11
198	Scanning probe microscopy as a scalpel to probe filament formation in conductive bridging memory devices. Microelectronic Engineering, 2014, 120, 67-70.	1.1	26

#	Article	IF	CITATIONS
199	Three-Dimensional Observation of the Conductive Filament in Nanoscaled Resistive Memory Devices. Nano Letters, 2014, 14, 2401-2406.	4.5	290
200	A Single-Event MicroKinetic assessment of n-alkane hydroconversion on ultrastable Y zeolites after Atomic Layer Deposition of alumina. Journal of Catalysis, 2014, 311, 433-446.	3.1	23
201	<i>In situ</i> synchrotron based x-ray techniques as monitoring tools for atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	0.9	34
202	Reactor concepts for atomic layer deposition on agitated particles: A review. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	0.9	85
203	Synthesis of a 3D network of Pt nanowires by atomic layer deposition on a carbonaceous template. Nanoscale, 2014, 6, 6939.	2.8	14
204	Transparent conducting oxide films of group V doped titania prepared by aqueous chemical solution deposition. Thin Solid Films, 2014, 555, 33-38.	0.8	14
205	Annealing of sulfide stabilized colloidal semiconductor nanocrystals. Journal of Materials Chemistry C, 2014, 2, 178-183.	2.7	9
206	Plasma enhanced atomic layer deposition of Ga ₂ O ₃ thin films. Journal of Materials Chemistry A, 2014, 2, 19232-19238.	5.2	77
207	Air-stable short-wave infrared PbS colloidal quantum dot photoconductors passivated with Al2O3 atomic layer deposition. Applied Physics Letters, 2014, 105, .	1.5	55
208	Air-based photoelectrochemical cell capturing water molecules from ambient air for hydrogen production. RSC Advances, 2014, 4, 29286-29290.	1.7	45
209	Atomic layer deposition-based tuning of the pore size in mesoporous thin films studied by in situ grazing incidence small angle X-ray scattering. Nanoscale, 2014, 6, 14991-14998.	2.8	44
210	Plasma enhanced atomic layer deposition of Fe ₂ O ₃ thin films. Journal of Materials Chemistry A, 2014, 2, 10662-10667.	5.2	43
211	Catalytic activation of OKO zeolite with intersecting pores of 10- and 12-membered rings using atomic layer deposition of aluminium. Chemical Communications, 2014, 50, 4610-4612.	2.2	24
212	Atomic layer deposition-based synthesis of photoactive TiO2 nanoparticle chains by using carbon nanotubes as sacrificial templates. RSC Advances, 2014, 4, 11648.	1.7	48
213	Unravelling the Formation of Pt–Ga Alloyed Nanoparticles on Calcined Ga-Modified Hydrotalcites by <i>in Situ</i> XAS. Chemistry of Materials, 2014, 26, 5936-5949.	3.2	28
214	Thermal and Plasma-Enhanced Atomic Layer Deposition of TiN Using TDMAT and NH ₃ on Particles Agitated in a Rotary Reactor. ACS Applied Materials & Interfaces, 2014, 6, 7316-7324.	4.0	30
215	Factors Influencing the Conductivity of Aqueous Sol(ution)–Gel-Processed Al-Doped ZnO Films. Chemistry of Materials, 2014, 26, 5839-5851.	3.2	29
216	Synthesis and Characterization of Photoreactive TiO ₂ –Carbon Nanosheet Composites. Journal of Physical Chemistry C, 2014, 118, 21031-21037.	1.5	8

#	Article	IF	CITATIONS
217	Controllable nitrogen doping in as deposited TiO2 film and its effect on post deposition annealing. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	0.9	22
218	Delivering a Modifying Element to Metal Nanoparticles via Support: Pt–Ga Alloying during the Reduction of Pt/Mg(Al,Ga)O _{<i>x</i>} Catalysts and Its Effects on Propane Dehydrogenation. ACS Catalysis, 2014, 4, 1812-1824.	5.5	100
219	Influence of carbon content on the copper-telluride phase formation and on the resistive switching behavior of carbon alloyed Cu-Te conductive bridge random access memory cells. Journal of Applied Physics, 2014, 115, 054501.	1.1	11
220	Phase formation in intermixed Ni–Ge thin films: Influence of Ge content and low-temperature nucleation of hexagonal nickel germanides. Microelectronic Engineering, 2014, 120, 168-173.	1.1	11
221	In situ XAS and XRF study of nanoparticle nucleation during O3-based Pt deposition. Catalysis Today, 2014, 229, 2-13.	2.2	33
222	Crystallization and semiconductor-metal switching behavior of thin VO2 layers grown by atomic layer deposition. Thin Solid Films, 2014, 550, 59-64.	0.8	30
223	Photocatalytic acetaldehyde oxidation in air using spacious TiO2 films prepared by atomic layer deposition on supported carbonaceous sacrificial templates. Applied Catalysis B: Environmental, 2014, 160-161, 204-210.	10.8	37
224	Swelling of U(Mo) dispersion fuel under irradiation – Non-destructive analyses of the SELENIUM plates. Journal of Nuclear Materials, 2013, 442, 60-68.	1.3	42
225	Sealed ultra low-k organosilica films with improved electrical, mechanical and chemical properties. Journal of Materials Chemistry C, 2013, 1, 3961.	2.7	8
226	Switching mechanism and reverse engineering of low-power Cu-based resistive switching devices. Nanoscale, 2013, 5, 11187.	2.8	32
227	Partially fluorinated MIL-47 and Al-MIL-53 frameworks: influence of functionalization on sorption and breathing properties. Physical Chemistry Chemical Physics, 2013, 15, 3552.	1.3	63
228	Electron barrier height at CuxTe1â^'x/Al2O3 interfaces of conducting bridge memory stacks. Thin Solid Films, 2013, 533, 34-37.	0.8	9
229	On the growth kinetics of Ni(Pt) silicide thin films. Journal of Applied Physics, 2013, 113, .	1.1	17
230	Surface engineering of low enriched uranium–molybdenum. Journal of Nuclear Materials, 2013, 440, 220-228.	1.3	44
231	Influence of Carbon Alloying on the Thermal Stability and Resistive Switching Behavior of Copper-Telluride Based CBRAM Cells. ACS Applied Materials & Interfaces, 2013, 5, 6984-6989.	4.0	38
232	Study of Schottky barrier height modulation for NiSi/Si contact with an antimony interlayer. Microelectronic Engineering, 2013, 106, 121-124.	1.1	5
233	Thermal-stability optimization of Al2O3/Cu–Te based conductive-bridging random access memory systems. Thin Solid Films, 2013, 533, 29-33	0.8	25
234	AlSi matrices for U(Mo) dispersion fuel plates. Journal of Nuclear Materials, 2013, 439, 7-18.	1.3	11

#	Article	IF	CITATIONS
235	Synthesis of uniformly dispersed anatase nanoparticles inside mesoporous silica thin films via controlled breakup and crystallization of amorphous TiO2 deposited using atomic layer deposition. Nanoscale, 2013, 5, 5001.	2.8	23
236	CeO ₂ -Modified Fe ₂ O ₃ for CO ₂ Utilization via Chemical Looping. Industrial & Engineering Chemistry Research, 2013, 52, 8416-8426.	1.8	149
237	Low-Temperature Atomic Layer Deposition of Platinum Using (Methylcyclopentadienyl)trimethylplatinum and Ozone. Journal of Physical Chemistry C, 2013, 117, 20557-20561.	1.5	90
238	Atomic Layer Deposition of TiO ₂ on Surface Modified Nanoporous Low- <i>k</i> Films. Langmuir, 2013, 29, 12284-12289.	1.6	19
239	Optimizations of Pulsed Plated p and nâ€ŧype Bi ₂ Te ₃ â€Based Ternary Compounds by Annealing in Different Ambient Atmospheres. Advanced Energy Materials, 2013, 3, 95-104.	10.2	77
240	Sealing of low-k dielectric (k=2.0) with self-assembled monolayers (SAMs) for the atomic layer deposition (ALD) of TiN. Materials Research Society Symposia Proceedings, 2013, 1559, 1.	0.1	2
241	(Invited) Optimization of WAl2O3Cu(-Te) Material Stack for High-Performance Conductive-Bridging Memory Cells. ECS Transactions, 2013, 58, 175-180.	0.3	1
242	Pore Narrowing of Mesoporous Silica Materials. Materials, 2013, 6, 570-579.	1.3	3
243	In Situ Study of ALD Processes Using Synchrotron-based X-ray Fluorescence and Scattering Techniques. ECS Transactions, 2013, 50, 35-42.	0.3	6
244	Low temperature plasma-enhanced atomic layer deposition of thin vanadium nitride layers for copper diffusion barriers. Applied Physics Letters, 2013, 102, 111910.	1.5	15
245	Effect of high temperature deposition on CoSi2 phase formation. Journal of Applied Physics, 2013, 113, 234902.	1.1	3
246	On the nucleation of PdSi and NiSi2 during the ternary Ni(Pd)/Si(100) reaction. Journal of Applied Physics, 2013, 114, .	1.1	5
247	Wetting transitions of polymers via thermal and plasma enhanced atomic layer depositions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	7
248	Three dimensional reciprocal space measurement by x-ray diffraction using linear and area detectors: Applications to texture and defects determination in oriented thin films and nanoprecipitates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, 021505.	0.9	21
249	VO ₂ , a Metal-Insulator Transition Material for Nanoelectronic Applications. ECS Transactions, 2012, 45, 151-158.	0.3	7
250	Improved Diffusion Barrier Properties and NiSi Thermal Stability for the Cu Contact with the Ru/TaSiN Stack on NiSi/Si. ECS Solid State Letters, 2012, 2, P1-P3.	1.4	3
251	Fermi Level Depinning Failure for Al/GeO2/Ge Contacts. ECS Solid State Letters, 2012, 1, P79-P81.	1.4	10
252	Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator. Optics Express, 2012, 20, 11855.	1.7	69

#	Article	IF	CITATIONS
253	Band alignment in Ge/GeOx/HfO2/TiO2 heterojunctions as measured by hard x-ray photoelectron spectroscopy. Applied Physics Letters, 2012, 101, .	1.5	10
254	TaNâ^•Ta as an Effective Diffusion Barrier for Direct Contact of Copper and NiSi. Electrochemical and Solid-State Letters, 2012, 15, H9.	2.2	2
255	Improved Thermal Stability and Electrical Performance by Using PEALD Ultrathin Al2O3 Film with Ta as Cu Diffusion Barrier on Low k Dielectrics. ECS Solid State Letters, 2012, 1, P54-P56.	1.4	3
256	In situ study of the growth properties of Ni-rare earth silicides for interlayer and alloy systems on Si(100). Journal of Applied Physics, 2012, 111, 043511.	1.1	6
257	Structural and Kinetic Study of the Reduction of CuO–CeO2/Al2O3 by Time-Resolved X-ray Diffraction. Catalysis Letters, 2012, 142, 959-968.	1.4	12
258	Solution derived ZnO:Al films with low resistivity. Thin Solid Films, 2012, 524, 81-85.	0.8	14
259	Determination of the dominant diffusing species during nickel and palladium germanide formation. Thin Solid Films, 2012, 526, 261-268.	0.8	16
260	<i>In Situ</i> Monitoring of Atomic Layer Deposition in Nanoporous Thin Films Using Ellipsometric Porosimetry. Langmuir, 2012, 28, 3852-3859.	1.6	51
261	Determination of activation energies of the U(Mo)/Si and U(Mo)/Al solid state reaction using in-situ X-ray diffraction and Kissinger analysis. Solid State Sciences, 2012, 14, 1133-1140.	1.5	11
262	Conformality of thermal and plasma enhanced atomic layer deposition on a non-woven fibrous substrate. Surface and Coatings Technology, 2012, 206, 4511-4517.	2.2	29
263	Anisotropic Atomic Layer Deposition Profiles of TiO ₂ in Hierarchical Silica Material with Multiple Porosity. Chemistry of Materials, 2012, 24, 2775-2780.	3.2	26
264	A new procedure to seal the pores of mesoporous low-k films with precondensed organosilica oligomers. Chemical Communications, 2012, 48, 2797.	2.2	22
265	Plasma-Enhanced ALD of Platinum with O ₂ , N ₂ and NH ₃ Plasmas. ECS Journal of Solid State Science and Technology, 2012, 1, Q123-Q129.	0.9	38
266	A rotary reactor for thermal and plasma-enhanced atomic layer deposition on powders and small objects. Surface and Coatings Technology, 2012, 213, 183-191.	2.2	42
267	Ultra-low-k cyclic carbon-bridged PMO films with a high chemical resistance. Journal of Materials Chemistry, 2012, 22, 8281.	6.7	44
268	Tuning the Pore Size of Ink-Bottle Mesopores by Atomic Layer Deposition. Chemistry of Materials, 2012, 24, 1992-1994.	3.2	59
269	Optimization of Electrodeposited pâ€Doped Sb ₂ Te ₃ Thermoelectric Films by Millisecond Potentiostatic Pulses. Advanced Energy Materials, 2012, 2, 345-352.	10.2	63
270	Germanium surface passivation and atomic layer deposition of high- <i>k</i> dielectrics—a tutorial review on Ge-based MOS capacitors. Semiconductor Science and Technology, 2012, 27, 074012.	1.0	138

#	Article	IF	CITATIONS
271	The coordinatively saturated vanadium MIL-47 as a low leaching heterogeneous catalyst in the oxidation of cyclohexene. Journal of Catalysis, 2012, 285, 196-207.	3.1	100
272	Atomic Layer Deposition of Titanium and Vanadium Oxide on Mesoporous Silica and Phenol/Formaldehyde Resins - the Effect of the Support on the Liquid Phase Epoxidation of Cyclohexene. European Journal of Inorganic Chemistry, 2012, 2012, 251-260.	1.0	23
273	Spacious and mechanically flexible mesoporous silica thin film composed of an open network of interlinked nanoslabs. Journal of Materials Chemistry, 2011, 21, 7692.	6.7	24
274	Aluminium atomic layer deposition applied to mesoporous zeolites for acid catalytic activity enhancement. Catalysis Science and Technology, 2011, 1, 218.	2.1	39
275	Embedding Quantum Dot Monolayers in Al ₂ O ₃ Using Atomic Layer Deposition. Chemistry of Materials, 2011, 23, 126-128.	3.2	29
276	In Situ X-ray Fluorescence Measurements During Atomic Layer Deposition: Nucleation and Growth of TiO ₂ on Planar Substrates and in Nanoporous Films. Journal of Physical Chemistry C, 2011, 115, 6605-6610.	1.5	66
277	Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition. Applied Physics Letters, 2011, 98, .	1.5	78
278	High-Performance Ge MOS Capacitors by \$hbox{O}_{2}\$ Plasma Passivation and \$hbox{O}_{2}\$ Ambient Annealing. IEEE Electron Device Letters, 2011, 32, 1656-1658.	2.2	19
279	Tailoring nanoporous materials by atomic layer deposition. Chemical Society Reviews, 2011, 40, 5242.	18.7	338
280	Phase formation and texture of nickel silicides on Si1â^'xCx epilayers. Microelectronic Engineering, 2011, 88, 536-540.	1.1	14
281	Annealing effect on the metal gate effective work function modulation for the Al/TiN/SiO2/p-Si structure. Microelectronic Engineering, 2011, 88, 573-577.	1.1	23
282	TaCN growth with PDMAT and H2/Ar plasma by plasma enhanced atomic layer deposition. Microelectronic Engineering, 2011, 88, 646-650.	1.1	11
283	ALD-grown seed layers for electrochemical copper deposition integrated with different diffusion barrier systems. Microelectronic Engineering, 2011, 88, 684-689.	1.1	50
284	Interfacial reactions of Gd- and Nb-oxide based high-k layers deposited by aqueous chemical solution deposition. Microelectronic Engineering, 2011, 88, 1338-1341.	1.1	5
285	<i>In situ</i> synchrotron based x-ray fluorescence and scattering measurements during atomic layer deposition: Initial growth of HfO2 on Si and Ge substrates. Applied Physics Letters, 2011, 98, .	1.5	24
286	Effective reduction of fixed charge densities in germanium based metal-oxide-semiconductor devices. Applied Physics Letters, 2011, 99, .	1.5	27
287	Sn diffusion during Ni germanide growth on Ge1–xSnx. Applied Physics Letters, 2011, 99, 211905.	1.5	15
288	Influence of the Cu-Te composition and microstructure on the resistive switching of Cu-Te/Al2O3/Si cells. Applied Physics Letters, 2011, 99, .	1.5	89

0

#	Article	IF	CITATIONS
289	Effective Schottky Barrier Height Modulation by an Ultrathin Passivation Layer of GeOxNy for Alâ^•n-Ge(100) Contact. Electrochemical and Solid-State Letters, 2011, 14, H487.	2.2	9
290	The Inhibition of Enhanced Cu Oxidation on Rutheniumâ^•Diffusion Barrier Layers for Cu Interconnects by Carbon Alloying into Ru. Journal of the Electrochemical Society, 2011, 158, H1228.	1.3	7
291	Annealing induced hysteresis suppression for TiN/HfO ₂ /GeON/p-Ge capacitor. Semiconductor Science and Technology, 2011, 26, 125003.	1.0	8
292	TiO2/HfO2 Bi-Layer Gate Stacks Grown by Atomic Layer Deposition for Germanium-Based Metal-Oxide-Semiconductor Devices Using GeOxNy Passivation Layer. Electrochemical and Solid-State Letters, 2011, 14, G27.	2.2	14
293	Effective Electrical Passivation of Ge(100) for HfO2 Gate Dielectric Layers Using O2 Plasma. Electrochemical and Solid-State Letters, 2011, 14, G20.	2.2	19
294	Oxygen sensing with ZnO thin films. , 2011, , .		2
295	The effects of deposition temperature and ambient onÂtheÂphysicalÂand electrical performance ofÂDC-sputteredÂn-ZnO/p-Si heterojunction. Applied Physics A: Materials Science and Processing, 2010, 98, 357-365.	1.1	41
296	In situ and ex situ investigation on the annealing performance of the ZnO film grown by ion beam deposition. Journal of Materials Science: Materials in Electronics, 2010, 21, 88-95.	1.1	9
297	In situ X-ray diffraction study of thin film Ir/Si solid state reactions. Microelectronic Engineering, 2010, 87, 258-262.	1.1	7
298	In situ study of the formation of silicide phases in amorphous Co–Si mixed layers. Microelectronic Engineering, 2010, 87, 282-285.	1.1	5
299	Texture of atomic layer deposited ruthenium. Microelectronic Engineering, 2010, 87, 1879-1883.	1.1	17
300	The effect of sputtered W-based carbide diffusion barriers on the thermal stability and void formation in copper thin films. Microelectronic Engineering, 2010, 87, 2535-2539.	1.1	8
301	Texture of CoSi2 films on Si(111), (110) and (001) substrates. Thin Solid Films, 2010, 519, 1277-1284.	0.8	12
302	Texture of Cobalt Germanides on Ge(100) and Ge(111) and Its Influence on the Formation Temperature. Journal of the Electrochemical Society, 2010, 157, H395.	1.3	20
303	The Deposition of Ru and RuO ₂ Films for DRAM Electrode. ECS Transactions, 2010, 33, 135-144.	0.3	14
304	Ultrathin GeOxNy interlayer formed by <i>in situ</i> â€^NH3 plasma pretreatment for passivation of germanium metal-oxide-semiconductor devices. Applied Physics Letters, 2010, 97, .	1.5	25
305	Implementing TiO2 as gate dielectric for Ge-channel complementary metal-oxide-semiconductor devices by using HfO2/GeO2 interlayer. Applied Physics Letters, 2010, 97, .	1.5	41

Phase formation and stability of Ni silicide contacts - scaling to ultra-thin films. , 2010, , .

#	Article	IF	CITATIONS
307	In situ x-ray diffraction study of Ni–Yb interlayer and alloy systems on Si(100). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 20-26.	0.9	1
308	(Invited) Introducing Lanthanide Aluminates as Dielectrics for Nonvolatile Memory Applications: A Material Scientist's View. ECS Transactions, 2010, 33, 31-42.	0.3	6
309	Non-linear dielectric constant increase with Ti composition in high-k ALD-HfTiOxfilms after O2crystallization annealing. IOP Conference Series: Materials Science and Engineering, 2010, 8, 012023.	0.3	5
310	Seed Layer and Multistack Approaches to Reduce Leakage in SrTiO3-Based Metal–Insulator–Metal Capacitors Using TiN Bottom Electrode. Japanese Journal of Applied Physics, 2010, 49, 04DD01.	0.8	12
311	The influence of Pt redistribution on Ni1â^'xPtxSi growth properties. Journal of Applied Physics, 2010, 108, .	1.1	26
312	Phase formation and thermal stability of ultrathin nickel-silicides on Si(100). Applied Physics Letters, 2010, 96, .	1.5	73
313	Conformality of Al[sub 2]O[sub 3] and AlN Deposited by Plasma-Enhanced Atomic Layer Deposition. Journal of the Electrochemical Society, 2010, 157, G111.	1.3	91
314	Influence of a transient hexagonal phase on the microstructure and morphological stability of NiSi films. Applied Physics Letters, 2009, 94, .	1.5	38
315	Interdiffusion and crystallization in HfO2/Al2O3 superlattices. Applied Physics Letters, 2009, 95, 091911.	1.5	15
316	<i>In situ</i> study of the formation of silicide phases in amorphous Ni–Si mixed layers. Journal of Applied Physics, 2009, 106, .	1.1	12
317	Comparison of Thermal and Plasma-Enhanced ALD/CVD of Vanadium Pentoxide. Journal of the Electrochemical Society, 2009, 156, P122.	1.3	67
318	High-k Dielectrics and Metal Gates for Future Generation Memory Devices. ECS Transactions, 2009, 19, 29-40.	0.3	10
319	Growth and Material Characterization of Hafnium Titanates Deposited by Atomic Layer Deposition. Journal of the Electrochemical Society, 2009, 156, G145.	1.3	15
320	Composition influence on the physical and electrical properties of SrxTi1â^'xOy-based metal-insulator-metal capacitors prepared by atomic layer deposition using TiN bottom electrodes. Journal of Applied Physics, 2009, 106, 094101.	1.1	56
321	High-k dielectrics for future generation memory devices (Invited Paper). Microelectronic Engineering, 2009, 86, 1789-1795.	1.1	218
322	Ru thin film grown on TaN by plasma enhanced atomic layer deposition. Thin Solid Films, 2009, 517, 4689-4693.	0.8	49
323	Atomic layer deposition of titanium nitride from TDMAT precursor. Microelectronic Engineering, 2009, 86, 72-77.	1.1	149
324	Microencapsulation of Moisture-Sensitive CaS:Eu[sup 2+] Particles with Aluminum Oxide. Journal of the Electrochemical Society, 2009, 156, J333.	1.3	63

#	Article	IF	CITATIONS
325	<i>In situ</i> x-ray diffraction study of metal induced crystallization of amorphous germanium. Journal of Applied Physics, 2009, 105, .	1.1	103
326	Crystallization resistance of barium titanate zirconate ultrathin films from aqueous CSD: a study of cause and effect. Journal of Materials Chemistry, 2009, 19, 1115.	6.7	9
327	Modeling the Conformality of Atomic Layer Deposition: The Effect of Sticking Probability. Journal of the Electrochemical Society, 2009, 156, P63.	1.3	92
328	Metal In-Diffusion during Fe and Co-Germanidation of Germanium. Solid State Phenomena, 2008, 131-133, 47-52.	0.3	5
329	Yttrium silicide formation and its contact properties on Si(100). Microelectronic Engineering, 2008, 85, 131-135.	1.1	9
330	The effect of silicon on the interaction between metallic uranium and aluminum: A 50 year long diffusion experiment. Journal of Nuclear Materials, 2008, 381, 242-248.	1.3	39
331	In-situ X-ray Diffraction study of Metal Induced Crystallization of amorphous silicon. Thin Solid Films, 2008, 516, 4946-4952.	0.8	140
332	Diffusion barrier properties of TaNx films prepared by plasma enhanced atomic layer deposition from PDMAT with N2 or NH3 plasma. Microelectronic Engineering, 2008, 85, 2059-2063.	1.1	18
333	Epitaxial Formation of a Metastable Hexagonal Nickel–Silicide. Electrochemical and Solid-State Letters, 2008, 11, H266.	2.2	41
334	Effect of Pt addition on growth stress and thermal stress of NiSi films. Journal of Applied Physics, 2008, 104, 053510.	1.1	15
335	Pt redistribution during Ni(Pt) silicide formation. Applied Physics Letters, 2008, 93, .	1.5	47
336	Formation and stability of NiSi in the presence of Co and Fe alloying elements. Journal of Vacuum Science & Technology B, 2008, 26, 1971-1977.	1.3	3
337	Simultaneous real-time x-ray diffraction spectroscopy, Rutherford backscattering spectrometry, and sheet resistance measurements to study thin film growth kinetics by Kissinger plots. Journal of Applied Physics, 2008, 104, 103538.	1.1	9
338	Nucleation and diffusion during growth of ternary Co1â°'xNixSi2 thin films studied by complementary techniques in real time. Journal of Applied Physics, 2008, 104, 093533.	1.1	13
339	The role of lattice mismatch and kinetics in texture development: Co1â^'xNixSi2 thin films on Si(100). Journal of Applied Physics, 2008, 103, .	1.1	18
340	0.5 nm EOT low leakage ALD SrTiO <inf>3</inf> on TiN MIM capacitors for DRAM applications. , 2008, , .		6
341	Growth Kinetics and Crystallization Behavior of TiO[sub 2] Films Prepared by Plasma Enhanced Atomic Layer Deposition. Journal of the Electrochemical Society, 2008, 155, H688.	1.3	111
342	Texture of NiSi films on Si(001), (111), and (110) substrates. Journal of Applied Physics, 2008, 103, 113526.	1.1	21

#	Article	IF	CITATIONS
343	Study of metal-related deep-level defects in germanide Schottky barriers on n-type germanium. Journal of Applied Physics, 2008, 104, .	1.1	22
344	Thermal Versus Plasma-Enhanced ALD: Growth Kinetics and Conformality. ECS Transactions, 2008, 16, 239-246.	0.3	21
345	Texture analysis of silicide thin films: combining statistical and microscopical information. , 2008, , 365-366.		0
346	Fundamentals of Intrinsic Stress during Silicide Formation. AIP Conference Proceedings, 2007, , .	0.3	1
347	Plasma-enhanced chemical vapour deposition growth of Si nanowires with low melting point metal catalysts: an effective alternative to Au-mediated growth. Nanotechnology, 2007, 18, 505307.	1.3	120
348	Transient and end silicide phase formation in thin film Ni/polycrystalline-Si reactions for fully silicided gate applications. Applied Physics Letters, 2007, 91, 172108.	1.5	10
349	Formation and morphological stability of NiSi in the presence of W, Ti, and Ta alloying elements. Journal of Applied Physics, 2007, 101, 044508.	1.1	56
350	Characterization of the texture of silicide films using electron backscattered diffraction. Applied Physics Letters, 2007, 90, 121920.	1.5	17
351	Oxidation suppression in ytterbium silicidation by Tiâ^•TiN bicapping layer. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 285-289.	0.9	9
352	Kinetics of Ni3Si2 formation in the Ni2Si–NiSi thin film reaction from in situ measurements. Applied Physics Letters, 2007, 91, 232102.	1.5	9
353	Thin film solid-state reactions forming carbides as contact materials for carbon-containing semiconductors. Journal of Applied Physics, 2007, 101, 053714.	1.1	32
354	Alternative Catalysts For Si-Technology Compatible Growth Of Si Nanowires. Materials Research Society Symposia Proceedings, 2007, 1017, 14.	0.1	2
355	Influence of Ge substrate crystallinity on Co germanide formation in solid-state reactions. Applied Physics Letters, 2007, 90, 031906.	1.5	29
356	Point-Defect Generation in Ni-, Pd-, and Pt-Germanide Schottky Barriers on n-Type Germanium. Journal of the Electrochemical Society, 2007, 154, H857.	1.3	10
357	Growth of pinhole-free ytterbium silicide film by solid-state reaction on Si(001) with a thin amorphous Si interlayer. Journal of Applied Physics, 2007, 102, 033508.	1.1	12
358	Atomic layer deposition of TiO2 from tetrakis-dimethyl-amido titanium or Ti isopropoxide precursors and H2O. Journal of Applied Physics, 2007, 102, .	1.1	214
359	Stress evolution during Ni–Si compound formation for fully silicided (FUSI) gates. Microelectronic Engineering, 2007, 84, 2533-2536.	1.1	3
360	Solid-state formation of titanium carbide and molybdenum carbide as contacts for carbon-containing semiconductors. Journal of Applied Physics, 2006, 99, 063704.	1.1	38

#	Article	IF	CITATIONS
361	Thin film reaction of transition metals with germanium. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 474-485.	0.9	208
362	Linear growth of Ni2Si thin film on n+/p junction at low temperature. Journal of Materials Research, 2006, 21, 3017-3021.	1.2	1
363	A deep-level transient spectroscopy study of Co- and Ni-germanided n-type germanium. Materials Science in Semiconductor Processing, 2006, 9, 554-558.	1.9	12
364	Effects of additive elements on the phase formation and morphological stability of nickel monosilicide films. Microelectronic Engineering, 2006, 83, 2042-2054.	1.1	121
365	Edge-to-edge matching in thin films. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 851-855.	1.1	1
366	Edge-to-edge matching in thin films. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 851-855.	1.1	0
367	Point-Defect Generation in Ni-, Pd-, and Pt-Germanided Schottky Barriers on N-Type Germanium Substrates. ECS Transactions, 2006, 3, 391-400.	0.3	3
368	Reaction of thin Ni films with Ge: Phase formation and texture. Journal of Applied Physics, 2006, 100, 034306.	1.1	62
369	Deep level transient spectroscopy study of nickel-germanide Schottky barriers on n-type germanium. Applied Physics Letters, 2006, 88, 183506.	1.5	21
370	Deep level transient spectroscopy study of Pd and Pt sputtering damage in n-type germanium. Applied Physics Letters, 2006, 89, 202114.	1.5	9
371	Edge-to-edge matching in thin films. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 851-855.	1.1	1
372	Applications of synchrotron X-rays in microelectronics industry research. Nuclear Instruments & Methods in Physics Research B, 2005, 241, 247-252.	0.6	3
373	Reactive Diffusion in the Ni-Si System: Influence of Ni Thickness on the Phase Formation Sequence. ECS Meeting Abstracts, 2005, , .	0.0	0
374	Reactive Diffusion in the Ni-Si System: Phase Sequence and Formation of Metal-Rich Phases. Defect and Diffusion Forum, 2005, 237-240, 825-836.	0.4	29
375	Texture in Thin Films. Materials Science Forum, 2005, 495-497, 1333-1342.	0.3	3
376	High-temperature degradation of NiSi films: Agglomeration versus NiSi2 nucleation. Journal of Applied Physics, 2005, 98, 033526.	1.1	106
377	Effect of metal liner on electromigration in Cu Damascene lines. Journal of Applied Physics, 2005, 98, 124501.	1.1	14
378	Electrical characterization of NiSi/Si interfaces formed by a single and a two-step rapid thermal silicidation. Semiconductor Science and Technology, 2005, 20, 716-719.	1.0	6

#	Article	IF	CITATIONS
379	Low-temperature formation of CoSi2 in the presence of Au. Journal of Applied Physics, 2004, 95, 5340-5346.	1.1	20
380	Texture of tetragonalαâ^'FeSi2films on Si(001). Physical Review B, 2004, 69, .	1.1	26
381	Influence of Pt addition on the texture of NiSi on Si(001). Applied Physics Letters, 2004, 84, 3549-3551.	1.5	93
382	Defect Characterization of the Structure-Growth Zone-Model for Sputter Deposited Cu Films. Materials Science Forum, 2004, 445-446, 69-71.	0.3	2
383	CoSi2 formation in the presence of Ti, Ta or W. Thin Solid Films, 2004, 468, 174-182.	0.8	15
384	Thermal stability, phase and interface uniformity of Ni-silicide formed by Ni–Si solid-state reaction. Thin Solid Films, 2004, 462-463, 146-150.	0.8	18
385	Influence of processing conditions on CoSi2 formation in the presence of a Ti capping layer. Microelectronic Engineering, 2004, 71, 252-261.	1.1	16
386	Axiotaxy of CoSi2 thin films on Si(100) substrates and the effects of Ti alloying. Journal of Applied Physics, 2004, 95, 8376-8381.	1.1	20
387	Towards implementation of a nickel silicide process for CMOS technologies. Microelectronic Engineering, 2003, 70, 144-157.	1.1	387
388	An off-normal fibre-like texture in thin films on single-crystal substrates. Nature, 2003, 426, 641-645.	13.7	181
389	Thermodynamics and kinetics of room-temperature microstructural evolution in copper films. Journal of Applied Physics, 2003, 94, 2874-2881.	1.1	67
390	Mixing entropy and the nucleation of silicides: Ni–Pd–Si and Co–Mn–Si ternary systems. Journal of Materials Research, 2003, 18, 1668-1678.	1.2	19
391	Thermal expansion of the isostructural PtSi and NiSi: Negative expansion coefficient in NiSi and stress effects in thin films. Journal of Applied Physics, 2003, 93, 2510-2515.	1.1	61
392	Room-temperature grain growth in sputter-deposited Cu films. Applied Physics Letters, 2003, 82, 1863-1865.	1.5	47
393	Does line-edge roughness matter?: FEOL and BEOL perspectives. , 2003, , .		3
394	CoSi2 formation in the presence of carbon. Journal of Applied Physics, 2002, 92, 1207-1211.	1.1	20
395	Kinetics of agglomeration of NiSi and NiSi2 phase formation Materials Research Society Symposia Proceedings, 2002, 745, 4121.	0.1	5
396	Room temperature grain growth in sputtered Cu films. Materials Research Society Symposia Proceedings, 2002, 749, 1.	0.1	0

#	Article	IF	CITATIONS
397	Silicide Formation for Ni and Pd Bilayers on Si(100) Substrates. Materials Research Society Symposia Proceedings, 2001, 670, 1.	0.1	2
398	CoSi2 formation using a Ti capping layer - The influence of processing conditions on CoSi2 nucleation Materials Research Society Symposia Proceedings, 2001, 670, 1.	0.1	1
399	The dependence of the etching property of CoSi2 films in diluted HF solutions on the formation conditions. Applied Surface Science, 2001, 178, 44-49.	3.1	1
400	CoSi2 nucleation in the presence of Ge. Thin Solid Films, 2001, 384, 243-250.	0.8	19
401	CoSi2 formation through SiO2. Thin Solid Films, 2001, 386, 19-26.	0.8	26
402	Orientation-dependent stress build-up during the formation of epitaxial CoSi2. Microelectronic Engineering, 2001, 55, 145-150.	1.1	1
403	Nanometer patterning of thin CoSi2-films by application of local stress. Microelectronic Engineering, 2001, 55, 177-182.	1.1	2
404	Electrical characterization of Ar-ion-bombardment-induced damage in Au/Si and PtSi/Si Schottky barrier contacts. Semiconductor Science and Technology, 2001, 16, 83-90.	1.0	11
405	Formation of epitaxial CoSi2 by a Cr or Mo interlayer: Comparison with a Ti interlayer. Journal of Applied Physics, 2001, 89, 2146-2150.	1.1	28
406	Electrical characteristics of CoSi2/n-Si(100) Schottky barrier contacts formed by solid state reaction. Solid-State Electronics, 2000, 44, 1807-1818.	0.8	63
407	Ballistic electron emission microscopy studies of the temperature dependence of Schottky barrier height distribution in CoSi2/n-Si(100) diodes formed by solid phase reaction. Solid-State Electronics, 2000, 44, 2217-2223.	0.8	10
408	Barrier height inhomogeneities of epitaxial CoSi2 Schottky contacts on n-Si (100) and (111). Solid-State Electronics, 2000, 44, 663-671.	0.8	225
409	Growth of patterned thin epitaxial CoSi2-films by a titanium oxide mediated epitaxy process. Thin Solid Films, 2000, 380, 201-203.	0.8	3
410	The influence of Ti capping layers on CoSi2 formation. Microelectronic Engineering, 2000, 50, 125-132.	1.1	35
411	Ion-bombardment effects on PtSi/n-Si Schottky contacts studied by ballistic electron emission microscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 1942.	1.6	0
412	A BEEM study of Schottky barrier height distributions of ultrathin CoSi2/n-Si(100) formed by solid phase epitaxy. Semiconductor Science and Technology, 2000, 15, 349-356.	1.0	17
413	Influence of Ti on CoSi2 nucleation. Applied Physics Letters, 2000, 77, 3170-3172.	1.5	38
414	CoSi2 formation in the Ti/Co/SiO2/Si system. Journal of Applied Physics, 2000, 88, 133-140.	1.1	44

#	Article	IF	CITATIONS
415	Nondestructive characterization of thin silicides using x-ray reflectivity. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 470-476.	0.9	7
416	Influence of mixing entropy on the nucleation ofCoSi2. Physical Review B, 2000, 62, 12045-12051.	1.1	78
417	CoSi2 formation in the presence of interfacial silicon oxide. Applied Physics Letters, 1999, 74, 2930-2932.	1.5	34
418	A BEEM study of the temperature dependence of the barrier height distribution in PtSi/n-Si Schottky diodes. Solid State Communications, 1999, 112, 611-615.	0.9	66
419	The Influence of Ti Capping Layers on CoSi ₂ Formation in the Presence of Interfacial Oxide. Materials Research Society Symposia Proceedings, 1999, 564, 139.	0.1	1
420	Formation and Characterization of Spe Grown Ultra-Thin Cobalt Disilicide Film. Materials Research Society Symposia Proceedings, 1999, 564, 157.	0.1	1
421	A Beem Study of PtSi Schottky Contacts on Ion-Milled Si. Materials Research Society Symposia Proceedings, 1999, 564, 201.	0.1	1
422	Ballistic electron emission microscopy study of barrier height inhomogeneities introduced in Au/n-Si Schottky contacts by a HF pretreatment. Journal of Applied Physics, 1998, 84, 3226-3231.	1.1	82
423	Non-destructive characterization of thin silicides using X-ray reflectivity. , 0, , .		0
424	An atomic force microscopy study of thin CoSi/sub 2/ films formed by solid state reaction. , 0, , .		1
425	The effect of Pd addition on silicide formation for Ni/Pd bilayers on silicon. , 0, , .		0
426	Texture of silicide films on Si[001] : the occurrence of axiotaxy in cubic CoSi/sub 2/, tetragonal α-FeSi/sub 2/ and orthorhombic NiSi. , 0, , .		0
427	Texture Effects in Solid-State Reactions of Thin Films. Materials Science Forum, 0, 706-709, 2857-2862.	0.3	1
428	The Texture of Thin NiSi Films and Its Effect on Agglomeration. Ceramic Transactions, 0, , 1-9.	0.1	5