
M Carmen Pérez-Camino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1270153/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chromatographic analysis of minor constituents in vegetable oils. Journal of Chromatography A, 2000, 881, 131-148.	1.8	256
2	Quantitative Determination of Hydroxy Pentacyclic Triterpene Acids in Vegetable Oils. Journal of Agricultural and Food Chemistry, 1999, 47, 1558-1562.	2.4	193
3	Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chemistry, 2015, 173, 972-978.	4.2	144
4	Influence of Fruit Ripening on Olive Oil Quality. Journal of Agricultural and Food Chemistry, 1996, 44, 3516-3520.	2.4	128
5	Update on solid-phase extraction for the analysis of lipid classes and related compounds. Journal of Chromatography A, 2000, 885, 321-341.	1.8	127
6	Evaluation of virgin olive oil bitterness by quantification of secoiridoid derivatives. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 71-75.	0.8	126
7	Gas and liquid chromatography of hydrocarbons in edible vegetable oils. Journal of Chromatography A, 2001, 936, 159-171.	1.8	115
8	Effects of Talc Addition and Operating Mode on the Quality and Oxidative Stability of Virgin Olive Oils Obtained by Centrifugation. Journal of Agricultural and Food Chemistry, 1996, 44, 3930-3934.	2.4	98
9	Microwave and Conventional Heating Effects on Thermoxidative Degradation of Edible Fats. Journal of Agricultural and Food Chemistry, 1997, 45, 3795-3798.	2.4	98
10	Microwave and Conventional Heating Effects on Some Physical and Chemical Parameters of Edible Fats. Journal of Agricultural and Food Chemistry, 1997, 45, 3000-3003.	2.4	80
11	Thermal stability and frying performance of genetically modified sunflower seed (Helianthus annuus) Tj ETQq1 1	0.784314 2.4	rg <u>B</u> T /Over <mark>l</mark> o
12	Effects of Olive Fruit Quality and Oil Storage Practices on the Diacylglycerol Content of Virgin Olive Oils. Journal of Agricultural and Food Chemistry, 2001, 49, 699-704.	2.4	71
13	Supplementation of oils with oleanolic acid from the olive leaf (olea europaea). European Journal of Lipid Science and Technology, 2004, 106, 22-26.	1.0	64
14	Alkyl Esters of Fatty Acids a Useful Tool to Detect Soft Deodorized Olive Oils. Journal of Agricultural and Food Chemistry, 2008, 56, 6740-6744.	2.4	61
15	Lipid Changes during Frying of Frozen Prefried Foods. Journal of Food Science, 1991, 56, 1644-1647.	1.5	59
16	Chemical Characterization of Major and Minor Compounds of Nut Oils: Almond, Hazelnut, and Pecan Nut. Journal of Chemistry, 2017, 2017, 1-11.	0.9	58
17	Long-chain fatty alcohols from evening primrose oil inhibit the inflammatory response in murine peritoneal macrophages. Journal of Ethnopharmacology, 2014, 151, 131-136.	2.0	46
18	Determination of Esters of Fatty Acids with Low Molecular Weight Alcohols in Olive Oils. Journal of Agricultural and Food Chemistry, 2002, 50, 4721-4725.	2.4	44

#	Article	IF	CITATIONS
19	Relationships between Oxidative Stability, Triacylglycerol Composition, and Antioxidant Content in Olive Oil Matrices. Journal of Agricultural and Food Chemistry, 2005, 53, 5766-5771.	2.4	44
20	Composition of fatty acids, triacylglycerols and polar compounds of different walnut varieties (<i>Juglans regia</i> L.) from Tunisia. Natural Product Research, 2014, 28, 1826-1833.	1.0	40
21	Determination of diacylglycerol isomers in vegetable oils by solid-phase extraction followed by gas chromatography on a polar phase. Journal of Chromatography A, 1996, 721, 305-314.	1.8	39
22	Fatty acid alkyl esters presence in olive oil vs. organoleptic assessment. Food Chemistry, 2012, 135, 1205-1209.	4.2	39
23	Combination of adsorption and size-exclusion chromatography for the determination of fatty acid monomers, dimers and polymers. Journal of Chromatography A, 1990, 514, 37-44.	1.8	38
24	Determination of high molecular mass polycyclic aromatic hydrocarbons in refined olive pomace and other vegetable oils. Journal of the Science of Food and Agriculture, 2004, 84, 1759-1764.	1.7	37
25	Characterization of artisanally and semiautomatically extracted argan oils from Morocco. European Journal of Lipid Science and Technology, 2008, 110, 1159-1166.	1.0	37
26	Systematic evaluation of heated fats based on quantitative analytical methods. JAOCS, Journal of the American Oil Chemists' Society, 1988, 65, 101-105.	0.8	33
27	Improved method for the determination of triacylglycerols in olive oils by high performance liquid chromatography. Grasas Y Aceites, 2003, 54, .	0.3	33
28	Digestibility of fatty acid monomers, dimers and polymers in the rat. JAOCS, Journal of the American Oil Chemists' Society, 1992, 69, 930-934.	0.8	31
29	Sources of contamination by polycyclic aromatic hydrocarbons in Spanish virgin olive oils. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2008, 25, 115-122.	1.1	30
30	Fatty acid ethyl esters (FAEE) in extra virgin olive oil: A case study of a quality parameter. LWT - Food Science and Technology, 2016, 66, 378-383.	2.5	30
31	Evaluation of Hydrolysis and Absorption of Thermally Oxidized Olive Oil in Non-Absorbed Lipids in the Rat. Annals of Nutrition and Metabolism, 1993, 37, 121-128.	1.0	29
32	Detection of argan oil adulterated with vegetable oils: new markers. Grasas Y Aceites, 2012, 63, 355-364.	0.3	29
33	Hot Water Dipping of Olives (Olea europaea) for Virgin Oil Debittering. Journal of Agricultural and Food Chemistry, 2005, 53, 8248-8252.	2.4	27
34	Simultaneous determination of long-chain aliphatic aldehydes and waxes in olive oils. Journal of Chromatography A, 2003, 983, 283-288.	1.8	22
35	Polycyclic Aromatic Hydrocarbons in Spanish Olive Oils: Relationship between Benzo(a)pyrene and Total Polycyclic Aromatic Hydrocarbon Content. Journal of Agricultural and Food Chemistry, 2008, 56, 10428-10432.	2.4	22
36	Sensory defects of virgin olive oil from a microbiological perspective. Trends in Food Science and Technology, 2015, 43, 227-235.	7.8	22

#	Article	IF	CITATIONS
37	Olive oil nutritional labeling by using Vis/NIR spectroscopy and compositional statistical methods. Innovative Food Science and Emerging Technologies, 2019, 51, 139-147.	2.7	22
38	On the glucoside analysis: Simultaneous determination of free and esterified steryl glucosides in olive oil. Detailed analysis of standards as compulsory first step. Food Chemistry, 2013, 141, 1273-1280.	4.2	19
39	Characterization of Glyceridic and Unsaponifiable Compounds of Sacha Inchi (Plukenetia) Tj ETQq1 1 0.78431	4 rgBT /Ove 2.4	erlock 10 Tf 5
40	Saturated hydrocarbon content in olive fruits and crude olive pomace oils. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 391-402.	1.1	19
41	Valorization of a high-acidity residual oil generated in the waste cooking oils recycling industries. Grasas Y Aceites, 2019, 70, 335.	0.3	18
42	Chemical characterization of commercial and single-variety avocado oils. Grasas Y Aceites, 2018, 69, 256.	0.3	17
43	Determination of the molecular species composition of diacylglycerols in human adipose tissue by solid-phase extraction and gas chromatography on a polar phase. Biomedical Applications, 1998, 714, 127-132.	1.7	16
44	Specific procedure for analysing steryl glucosides in olive oil. European Journal of Lipid Science and Technology, 2012, 114, 1417-1426.	1.0	15
45	Methods of preparation of fatty acid methyl esters (FAME). Statistical assessment of the precision characteristics from a collaborative trial. Grasas Y Aceites, 2000, 51, .	0.3	14
46	Markers of quality and genuineness of commercial extra virgin sacha inchi oils. Grasas Y Aceites, 2016, 67, 169.	0.3	13
47	Isolation and characterization of sucrose polyesters. JAOCS, Journal of the American Oil Chemists' Society, 1994, 71, 385-390.	0.8	12
48	Polar compound concentrations in virgin oils from stored cultivar Picual olive fruits. Journal of Agricultural and Food Chemistry, 1992, 40, 2260-2262.	2.4	11
49	Analysis of methanol and ethanol in virgin olive oil. MethodsX, 2014, 1, 207-211.	0.7	11
50	Retinoprotective Effect of Wild Olive (Acebuche) Oil-Enriched Diet against Ocular Oxidative Stress Induced by Arterial Hypertension. Antioxidants, 2020, 9, 885.	2.2	11
51	Glyceridic and Unsaponifiable Components of Microencapsulated Sacha Inchi (Plukenetia) Tj ETQq1 1 0.78431	.4 rgBT/Ov	erlock 10 Tf 5
52	Aceites de oliva vÃrgenes y refinados: Diferencias en componentes menores glicerÃdicos. Grasas Y Aceites, 1993, 44, 91-96.	0.3	10
53	Olive oil mixtures. Part two: Detection of soft deodorized oil in extra virgin olive oil through diacylglycerol determination. Relationship with free acidity. Food Chemistry, 2020, 330, 127226.	4.2	9
54	Determination of saturated aliphatic hydrocarbons in vegetable oils. Grasas Y Aceites, 2016, 67, e127.	0.3	9

#	Article	IF	CITATIONS
55	Waxy fraction containing long-chain aliphatic aldehydes in virgin olive oils. Food Chemistry, 2012, 132, 1451-1456.	4.2	7
56	Comparative Study of Phytosterol Derivatives in Monovarietal Olive Oils. Journal of Agricultural and Food Chemistry, 2014, 62, 5669-5674.	2.4	7
57	Chemical evaluation and thermal behavior of Chilean hazelnut oil (Gevuina avellana Mol) a comparative study with extra virgin olive oil. European Food Research and Technology, 2019, 245, 1021-1029.	1.6	7
58	Olive oil mixtures. Part one: Decisional trees or how to verify the olive oil percentage in declared blends. Food Chemistry, 2020, 315, 126235.	4.2	7
59	Thermodynamic functions for the transfer of 1-naphthoic acid from water to mixed aqueous solvents at 298 K. Journal of the Chemical Society Faraday Transactions I, 1985, 81, 1555.	1.0	6
60	Characterization of sucrose polyesters-triacylglycerols mixtures. JAOCS, Journal of the American Oil Chemists' Society, 1994, 71, 1017-1020.	0.8	6
61	Pyropheophytin a in Soft Deodorized Olive Oils. Foods, 2020, 9, 978.	1.9	6
62	Lupinus mutabilisoil obtained by expeller press: Yield, physicochemical characterization, antioxidant capacity, fatty acids and oxidative stability analyses. Scientia Agropecuaria, 2021, 12, 219-227.	0.5	6
63	Physicochemical characterization and oxidative stability of microencapsulated edible sacha inchi seed oil by spray drying. Grasas Y Aceites, 2020, 71, 387.	0.3	6
64	Comparison of oxidation of sucrose octaesters and triacylglycerols derived from olive oil. Food Chemistry, 1992, 44, 357-362.	4.2	5
65	Evaluation of susceptibility to oxidation of linoleyl derivatives by thin-layer chromatography with flame ionization detection. Journal of Chromatography A, 1994, 662, 363-368.	1.8	5
66	Absorción de grasas termoxidadas. I. Reproducibilidad y exactitud de las técnicas analÃŧicas previas a la evaluación de los lÃpidos no absorbidos. Grasas Y Aceites, 1991, 42, 32-37.	0.3	5
67	Oil From Three Aguaje Morphotypes (Mauritia flexuosa L.f.) Extracted by Supercritical Fluid With CO2: Chemical Composition and Chromatic Properties. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	4
68	Fatty Acid Ethyl Esters in Virgin Olive Oils: In-House Validation of a Revised Method. Foods, 2020, 9, 924.	1.9	3
69	Absorción de grasas termoxidadas. II. Influencia del nivel de alteración y porcentaje de grasa en la dieta. Grasas Y Aceites, 1992, 43, 198-230.	0.3	3
70	Antioxidant activity of alkyl hydroxytyrosyl ethers in unsaturated lipids. Food and Function, 2015, 6, 1999-2007.	2.1	2
71	Characterization of kabylian virgin olive oils according to fatty alcohols, waxes, and fatty acid alkyl esters. Journal of Food Measurement and Characterization, 2021, 15, 4960.	1.6	2
72	SLE Single-Step Purification and HPLC Isolation Method for Sterols and Triterpenic Dialcohols Analysis from Olive Oil. Foods, 2021, 10, 2019.	1.9	2

#	Article	IF	CITATIONS
73	DeterminaciÃ ³ n de absorciÃ ³ n de luz UV a 232 nm, composiciÃ ³ n de ácidos grasos, trilinoleÃna y triglicéridos con número equivalente de carbonos igual a 42, en aceites de oliva y de orujo de oliva: DeterminaciÃ ³ n de precisiÃ ³ n de los métodos analÃticos mediante el estudio estadÃstico de los resultados de un análisis colaborativo. Grasas Y Aceites, 1996, 47, 401-410.	0.3	2
74	Microencapsulation of Sacha Inchi (Plukenetia huayllabambana) Oil by Spray Drying with Camu Camu (Myrciaria dubia (H.B.K.) Mc Vaugh) and Mango (Mangifera indica) Skins. Proceedings (mdpi), 2020, 53, .	0.2	1
75	Fatty acid ethyl esters (FAEE) in virgin olive oil: A shorter and full validated approach as an alternative to the EU Official Method. Food Chemistry, 2022, 394, 133300.	4.2	1
76	USE OF ETHYLENE TO ACCELERATE MILL OLIVE RIPENING. Acta Horticulturae, 2008, , 111-117.	0.1	0