
Gehua Zhen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1270001/publications.pdf Version: 2024-02-01

CEHLIA ZHEN

#	Article	IF	CITATIONS
1	Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nature Medicine, 2013, 19, 704-712.	30.7	780
2	PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nature Medicine, 2014, 20, 1270-1278.	30.7	641
3	Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nature Medicine, 2015, 21, 1262-1271.	30.7	300
4	Transforming growth factor- \hat{l}^2 in stem cells and tissue homeostasis. Bone Research, 2018, 6, 2.	11.4	262
5	Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. Journal of Clinical Investigation, 2019, 129, 1076-1093.	8.2	239
6	3D Printed Anatomical Nerve Regeneration Pathways. Advanced Functional Materials, 2015, 25, 6205-6217.	14.9	228
7	Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone. Annals of the Rheumatic Diseases, 2016, 75, 1714-1721.	0.9	182
8	Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis. Trends in Pharmacological Sciences, 2014, 35, 227-236.	8.7	168
9	Improving neurological outcomes post-cardiac arrest in a rat model: Immediate hypothermia and quantitative EEG monitoring. Resuscitation, 2008, 76, 431-442.	3.0	161
10	Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nature Communications, 2019, 10, 181.	12.8	152
11	RODENT STROKE MODEL GUIDELINES FOR PRECLINICAL STROKE TRIALS (1ST EDITION). Journal of Experimental Stroke & Translational Medicine, 2009, 2, 2-27.	0.2	134
12	Inhibition of overactive TGF- \hat{l}^2 attenuates progression of heterotopic ossification in mice. Nature Communications, 2018, 9, 551.	12.8	125
13	Mechanically induced Ca2+ oscillations in osteocytes release extracellular vesicles and enhance bone formation. Bone Research, 2018, 6, 6.	11.4	122
14	Optimal electrical stimulation boosts stem cell therapy in nerve regeneration. Biomaterials, 2018, 181, 347-359.	11.4	107
15	Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight, 2020, 5, .	5.0	99
16	Quantitative EEG and neurological recovery with therapeutic hypothermia after asphyxial cardiac arrest in rats. Brain Research, 2006, 1111, 166-175.	2.2	97
17	Early electrophysiologic markers predict functional outcome associated with temperature manipulation after cardiac arrest in rats. Critical Care Medicine, 2008, 36, 1909-1916.	0.9	91
18	Heme–Hemopexin Complex Attenuates Neuronal Cell Death and Stroke Damage. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 953-964.	4.3	81

Gehua Zhen

#	Article	IF	CITATIONS
19	Mechanical stress determines the configuration of TGFÎ ² activation in articular cartilage. Nature Communications, 2021, 12, 1706.	12.8	81
20	Sensory innervation in porous endplates by Netrin-1 from osteoclasts mediates PGE2-induced spinal hypersensitivity in mice. Nature Communications, 2019, 10, 5643.	12.8	72
21	Sensory nerves regulate mesenchymal stromal cell lineage commitment by tuning sympathetic tones. Journal of Clinical Investigation, 2020, 130, 3483-3498.	8.2	65
22	Systemic neutralization of TGF $\hat{\epsilon}\hat{\mathbf{f}}^2$ attenuates osteoarthritis. Annals of the New York Academy of Sciences, 2016, 1376, 53-64.	3.8	62
23	RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF–VEGF complex in extracellular matrix. Nature Communications, 2016, 7, 11455.	12.8	61
24	PGE2 EP1 receptor exacerbated neurotoxicity in a mouse model of cerebral ischemia and Alzheimer's disease. Neurobiology of Aging, 2012, 33, 2215-2219.	3.1	48
25	Optimized protocol to reduce variable outcomes for the bilateral common carotid artery occlusion model in mice. Journal of Neuroscience Methods, 2007, 166, 73-80.	2.5	46
26	Inhibition of cyclooxygenase-2 activity in subchondral bone modifies a subtype of osteoarthritis. Bone Research, 2019, 7, 29.	11.4	37
27	Aberrant TGF-β activation in bone tendon insertion induces enthesopathy-like disease. Journal of Clinical Investigation, 2018, 128, 846-860.	8.2	36
28	Aberrant Activation of TGF-β in Subchondral Bone at the Onset of Rheumatoid Arthritis Joint Destruction. Journal of Bone and Mineral Research, 2015, 30, 2033-2043.	2.8	34
29	Parathyroid hormone attenuates osteoarthritis pain by remodeling subchondral bone in mice. ELife, 2021, 10, .	6.0	34
30	Aberrant subchondral osteoblastic metabolism modifies NaV1.8 for osteoarthritis. ELife, 2020, 9, .	6.0	34
31	Role of TGF-β in a Mouse Model of High Turnover Renal Osteodystrophy. Journal of Bone and Mineral Research, 2014, 29, 1141-1157.	2.8	29
32	Glucocorticoids Disrupt Skeletal Angiogenesis Through Transrepression of NFâ€₽B–Mediated Preosteoclast <i>Pdgfb</i> Transcription in Young Mice. Journal of Bone and Mineral Research, 2020, 35, 1188-1202.	2.8	20
33	An antibody against Siglec-15 promotes bone formation and fracture healing by increasing TRAP+ mononuclear cells and PDGF-BB secretion. Bone Research, 2021, 9, 47.	11.4	20
34	Boneâ€ŧargeted delivery of TGFâ€Î² type 1 receptor inhibitor rescues uncoupled bone remodeling in Camurati–Engelmann disease. Annals of the New York Academy of Sciences, 2018, 1433, 29-40.	3.8	16
35	Mechanisms of bone pain: Progress in research from bench to bedside. Bone Research, 2022, 10, .	11.4	15
36	Sialylation of TLR2 initiates osteoclast fusion. Bone Research, 2022, 10, 24.	11.4	12

Gehua Zhen

#	Article	IF	CITATIONS
37	Metabolic Syndrome and Osteoarthritis Distribution in the Hand Joints: A Propensity Score Matching Analysis From the Osteoarthritis Initiative. Journal of Rheumatology, 2021, 48, 1608-1615.	2.0	8
38	Longâ€ŧerm feasibility and biocompatibility of directly microsurgically implanted intrafascicular electrodes in free roaming rabbits. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 435-444.	3.4	6
39	Acute bioenergetic intervention or pharmacological preconditioning protects neuron against ischemic injury. Journal of Experimental Stroke & Translational Medicine, 2013, 6, 7-17.	0.2	3
40	Epidermal Stem Cells in Orthopaedic Regenerative Medicine. International Journal of Molecular Sciences, 2013, 14, 11626-11642.	4.1	2