Vasileios C Kyttaris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1269876/publications.pdf Version: 2024-02-01

111 papers	5,844 citations	66250 44 h-index	87275 74 g-index
113	113	113	6072
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Implementing a Virtual Flipped Classroom in a Rheumatology Fellowship Program. Arthritis Care and Research, 2023, 75, 634-639.	1.5	4
2	Immunogenicity of SARS-CoV-2 vaccination in rituximab-treated patients: Effect of timing and immunologic parameters. Clinical Immunology, 2022, 234, 108897.	1.4	20
3	The spectrum of hemophagocytic lymphohistiocytosis: a retrospective study comparing adult macrophage activation syndrome to malignancy-associated hemophagocytic lymphohistiocytosis. Rheumatology International, 2022, 42, 1247-1255.	1.5	1
4	The deacetylase SIRT2 contributes to autoimmune disease pathogenesis by modulating IL-17A and IL-2 transcription. , 2022, 19, 738-750.		12
5	New treatments of systemic lupus erythematosus. , 2021, , 629-639.		0
6	Splicing factor SRSF1 limits IFN-γ production via RhoH and ameliorates experimental nephritis. Rheumatology, 2021, 60, 420-429.	0.9	12
7	A case of statin-associated immune-mediated necrotizing myopathy with atypical biopsy features. European Journal of Rheumatology, 2021, 8, 36-39.	1.3	1
8	ADAM9 enhances Th17 cell differentiation and autoimmunity by activating TGF-β1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
9	Rituximab-associated hypogammaglobulinemia in autoimmune rheumatic diseases: a single-center retrospective cohort study. Rheumatology International, 2021, 41, 1115-1124.	1.5	13
10	Measuring IFN activity in suspected SLE: a valuable step?. Expert Review of Clinical Immunology, 2021, 17, 545-548.	1.3	3
11	Journal Club: Efficacy and Safety of Voclosporin Versus Placebo for Lupus Nephritis (AURORA 1): A Doubleâ€Blind, Randomized, Multicenter, Placeboâ€Controlled, Phase 3 Trial. ACR Open Rheumatology, 2021, , .	0.9	4
12	Estrogenâ€Induced hsaâ€miRâ€10bâ€5p Is Elevated in T Cells From Patients With Systemic Lupus Erythematosus and Downâ€Regulates Serine/Arginineâ€Rich Splicing Factor 1. Arthritis and Rheumatology, 2021, 73, 2052-2058.	5 2.9	14
13	The CD38/NAD/SIRTUIN1/EZH2 Axis Mitigates Cytotoxic CD8ÂT Cell Function and Identifies Patients with SLE Prone to Infections. Cell Reports, 2020, 30, 112-123.e4.	2.9	102
14	Interleukin 23 is elevated in the serum of patients with SLE. Lupus, 2020, 29, 1943-1947.	0.8	14
15	Splicing factor SRSF1 controls T cell homeostasis and its decreased levels are linked to lymphopenia in systemic lupus erythematosus. Rheumatology, 2020, 59, 2146-2155.	0.9	24
16	Application of the 2019 European League Against Rheumatism/American College of Rheumatology systemic lupus erythematosus classification criteria in clinical practice: a single center experience. Lupus, 2020, 29, 421-425.	0.8	11
17	Serine/threonine phosphatase PP2A is essential for optimal B cell function. JCI Insight, 2020, 5, .	2.3	9
18	Signaling Lymphocytic Activation Molecule Family Member 1 Engagement Inhibits T Cell–B Cell Interaction and Diminishes Interleukinâ€6 Production and Plasmablast Differentiation in Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2019, 71, 99-108.	2.9	17

#	Article	IF	CITATIONS
19	Targeting cytokines to treat autoimmunity. Clinical Immunology, 2019, 206, 108251.	1.4	9
20	T cell–specific STAT3 deficiency abrogates lupus nephritis. Lupus, 2019, 28, 1468-1472.	0.8	16
21	Glutaminase 1 Inhibition Reduces Glycolysis and Ameliorates Lupusâ€like Disease in <scp>MRL</scp> / <i>lpr</i> Mice and Experimental Autoimmune Encephalomyelitis. Arthritis and Rheumatology, 2019, 71, 1869-1878.	2.9	66
22	Interleukin-23 deficiency alters thymic selection in lupus-prone mice. Lupus, 2019, 28, 1007-1012.	0.8	0
23	Downregulation of CD3ζ in NK Cells from Systemic Lupus Erythematosus Patients Confers a Proinflammatory Phenotype. Journal of Immunology, 2018, 200, 3077-3086.	0.4	12
24	Novel Treatments in Lupus. Frontiers in Immunology, 2018, 9, 2658.	2.2	37
25	Pyruvate dehydrogenase phosphatase catalytic subunit 2 limits Th17 differentiation. Proceedings of the United States of America, 2018, 115, 9288-9293.	3.3	51
26	Polyarticular septic arthritis caused by Staphylococcus lugdunensis in a patient with systemic lupus erythematosus. European Journal of Rheumatology, 2018, 5, 266-268.	1.3	2
27	Signaling Lymphocytic Activation Molecule Family Member 7 Engagement Restores Defective Effector CD8+ T Cell Function in Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2017, 69, 1035-1044.	2.9	63
28	Cathepsin K Deficiency Ameliorates Systemic Lupus Erythematosus-like Manifestations in <i>Faslpr</i> Mice. Journal of Immunology, 2017, 198, 1846-1854.	0.4	21
29	Novel Treatments in Lupus. Current Rheumatology Reports, 2017, 19, 10.	2.1	4
30	CD74 Deficiency Mitigates Systemic Lupus Erythematosus–like Autoimmunity and Pathological Findings in Mice. Journal of Immunology, 2017, 198, 2568-2577.	0.4	13
31	Brief Report: CD4+ T Cells From Patients With Systemic Lupus Erythematosus Respond Poorly to Exogenous Interleukinâ€2. Arthritis and Rheumatology, 2017, 69, 808-813.	2.9	51
32	IL-23 Limits the Production of IL-2 and Promotes Autoimmunity in Lupus. Journal of Immunology, 2017, 199, 903-910.	0.4	83
33	Expression patterns of signaling lymphocytic activation molecule family members in peripheral blood mononuclear cell subsets in patients with systemic lupus erythematosus. PLoS ONE, 2017, 12, e0186073.	1.1	27
34	New Treatments for Systemic Lupus Erythematosus. , 2016, , 551-557.		3
35	Targeting Syk in Autoimmune Rheumatic Diseases. Frontiers in Immunology, 2016, 7, 78.	2.2	62
36	Engagement of SLAMF3 enhances CD4 ⁺ T-cell sensitivity to IL-2 and favors regulatory T-cell polarization in systemic lupus erythematosus. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9321-9326.	3.3	30

#	Article	IF	CITATIONS
37	ICER is requisite for Th17 differentiation. Nature Communications, 2016, 7, 12993.	5.8	64
38	Pin1â€Targeted Therapy for Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2016, 68, 2503-2513.	2.9	22
39	Decreased SAP Expression in T Cells from Patients with Systemic Lupus Erythematosus Contributes to Early Signaling Abnormalities and Reduced IL-2 Production. Journal of Immunology, 2016, 196, 4915-4924.	0.4	14
40	Selective Loss of Signaling Lymphocytic Activation Molecule Family Member 4–Positive CD8+ T Cells Contributes to the Decreased Cytotoxic Cell Activity in Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2016, 68, 164-173.	2.9	53
41	Inhibition of SHP2 ameliorates the pathogenesis of systemic lupus erythematosus. Journal of Clinical Investigation, 2016, 126, 2077-2092.	3.9	56
42	A quantitative lateral flow assay to detect complement activation in blood. Analytical Biochemistry, 2015, 477, 78-85.	1.1	45
43	Signal transducer and activator of transcription (STAT) 3 inhibition delays the onset of lupus nephritis in MRL/lpr mice. Clinical Immunology, 2015, 158, 221-230.	1.4	59
44	T Cell Transcriptomes Describe Patient Subtypes in Systemic Lupus Erythematosus. PLoS ONE, 2015, 10, e0141171.	1.1	44
45	Systemic Lupus Erythematosus, Treatment. , 2014, , 1184-1188.		Ο
46	cAMP Responsive Element Modulator (CREM) α Mediates Chromatin Remodeling of CD8 during the Generation of CD3+CD4â^'CD8â^' T Cells. Journal of Biological Chemistry, 2014, 289, 2361-2370.	1.6	66
47	A T cell gene expression panel for the diagnosis and monitoring of disease activity in patients with systemic lupus erythematosus. Clinical Immunology, 2014, 150, 192-200.	1.4	33
48	Stat3 promotes IL-10 expression in lupus T cells through <i>trans-</i> activation and chromatin remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13457-13462.	3.3	148
49	Small molecules in the treatment of systemic lupus erythematosus. Clinical Immunology, 2013, 148, 359-368.	1.4	28
50	Treatment with Anti-Interleukin 23 Antibody Ameliorates Disease in Lupus-Prone Mice. BioMed Research International, 2013, 2013, 1-5.	0.9	46
51	cAMP-responsive Element Modulator α (CREMα) trans-Represses the Transmembrane Glycoprotein CD8 and Contributes to the Generation of CD3+CD4â^'CD8â^' T Cells in Health and Disease. Journal of Biological Chemistry, 2013, 288, 31880-31887.	1.6	53
52	Spleen Tyrosine Kinase (Syk) Regulates Systemic Lupus Erythematosus (SLE) T Cell Signaling. PLoS ONE, 2013, 8, e74550.	1.1	42
53	cAMP response element modulator α controls <i>IL2</i> and <i>IL17A</i> expression during CD4 lineage commitment and subset distribution in lupus. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16606-16611.	3.3	92
54	Increased Expression of SLAM Receptors SLAMF3 and SLAMF6 in Systemic Lupus Erythematosus T Lymphocytes Promotes Th17 Differentiation. Journal of Immunology, 2012, 188, 1206-1212.	0.4	65

#	Article	IF	CITATIONS
55	cAMP-responsive Element Modulator α (CREMα) Contributes to Decreased Notch-1 Expression in T Cells from Patients with Active Systemic Lupus Erythematosus (SLE). Journal of Biological Chemistry, 2012, 287, 42525-42532.	1.6	44
56	cAMP-responsive Element Modulator α (CREMα) Suppresses IL-17F Protein Expression in T Lymphocytes from Patients with Systemic Lupus Erythematosus (SLE). Journal of Biological Chemistry, 2012, 287, 4715-4725.	1.6	61
57	c-Jun and Ets2 Proteins Regulate Expression of Spleen Tyrosine Kinase in T Cells. Journal of Biological Chemistry, 2012, 287, 11833-11841.	1.6	10
58	Interleukin 23 as a Treatment Target in Systemic Lupus Erythematosus. Rheumatology (Sunnyvale, Calif) Tj ETQq(0 0 0 rgBT 0.3	/Qverlock 1

59	The role of Syk in osteoarthritis. Clinical Immunology, 2012, 144, 283-284.	1.4	2
60	Kinase inhibitors: a new class of antirheumatic drugs. Drug Design, Development and Therapy, 2012, 6, 245.	2.0	59
61	The Role of Interleukin-17 in Systemic Lupus Erythematosus. , 2011, , 391-400.		1
62	Biologic Agents in the Treatment of Systemic Lupus Erythematosus. , 2011, , 1109-1117.		1
63	Systemic lupus erythematosus serum deposits C4d on red blood cells, decreases red blood cell membrane deformability, and promotes nitric oxide production. Arthritis and Rheumatism, 2011, 63, 503-512.	6.7	41
64	Calcium signaling in systemic lupus erythematosus T cells: A treatment target. Arthritis and Rheumatism, 2011, 63, 2058-2066.	6.7	61
65	Circulating Adiponectin Is Inversely Associated with Risk of Thyroid Cancer: <i>In Vivo</i> and <i>in Vitro</i> Studies. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E2023-E2028.	1.8	61
66	Targeting lymphocyte signaling pathways as a therapeutic approach to systemic lupus erythematosus. Current Opinion in Rheumatology, 2011, 23, 449-453.	2.0	24
67	A systemic lupus erythematosus gene expression array in disease diagnosis and classification: a preliminary report. Lupus, 2011, 20, 243-249.	0.8	13
68	A Novel Intronic cAMP Response Element Modulator (CREM) Promoter Is Regulated by Activator Protein-1 (AP-1) and Accounts for Altered Activation-induced CREM Expression in T Cells from Patients with Systemic Lupus Erythematosus. Journal of Biological Chemistry, 2011, 286, 32366-32372.	1.6	28
69	Promoter Hypomethylation Results in Increased Expression of Protein Phosphatase 2A in T Cells from Patients with Systemic Lupus Erythematosus. Journal of Immunology, 2011, 186, 4508-4517.	0.4	65
70	Expression of CD44 variant isoforms CD44v3 and CD44v6 is increased on T cells from patients with systemic lupus erythematosus and is correlated with disease activity. Arthritis and Rheumatism, 2010, 62, 1431-1437.	6.7	76
71	Review: Ocular side effects of anti-rheumatic medications: what a rheumatologist should know. Lupus, 2010, 19, 675-682.	0.8	47
72	Chemosis as a presenting symptom of systemic lupus erythematosus. Lupus, 2010, 19, 997-1001.	0.8	3

#	Article	IF	CITATIONS
73	Cutting Edge: IL-23 Receptor Deficiency Prevents the Development of Lupus Nephritis in C57BL/6– <i>lpr/lpr</i> Mice. Journal of Immunology, 2010, 184, 4605-4609.	0.4	175
74	Lupus Serum IgG Induces Skin Inflammation through the TNFR1 Signaling Pathway. Journal of Immunology, 2010, 184, 7154-7161.	0.4	51
75	T cells as therapeutic targets in SLE. Nature Reviews Rheumatology, 2010, 6, 317-325.	3.5	230
76	Pathogenesis of human systemic lupus erythematosus: recent advances. Trends in Molecular Medicine, 2010, 16, 47-57.	3.5	311
77	Systemic Lupus Erythematosus: From Genes to Organ Damage. Methods in Molecular Biology, 2010, 662, 265-283.	0.4	43
78	Sterile empyematous pleural effusion in a patient with systemic lupus erythematosus: a diagnostic challenge. Lupus, 2009, 18, 581-585.	0.8	6
79	The Role of IL-23/IL-17 Axis in Lupus Nephritis. Journal of Immunology, 2009, 183, 3160-3169.	0.4	268
80	Whole genome association study results shed light on elusive aetiopathogenesis of systemic lupus erythematosus. International Journal of Clinical Practice, 2008, 62, 852-854.	0.8	1
81	T cells and in situ cryoglobulin deposition in the pathogenesis of lupus nephritis. Clinical Immunology, 2008, 128, 1-7.	1.4	34
82	How signaling and gene transcription aberrations dictate the systemic lupus erythematosus T cell phenotype. Trends in Immunology, 2008, 29, 110-115.	2.9	91
83	Expanded Double Negative T Cells in Patients with Systemic Lupus Erythematosus Produce IL-17 and Infiltrate the Kidneys. Journal of Immunology, 2008, 181, 8761-8766.	0.4	678
84	Differential Expression and Molecular Associations of Syk in Systemic Lupus Erythematosus T Cells. Journal of Immunology, 2008, 181, 8145-8152.	0.4	97
85	The RNA-stabilizing Protein HuR Regulates the Expression of ζ Chain of the Human T Cell Receptor-associated CD3 Complex. Journal of Biological Chemistry, 2008, 283, 20037-20044.	1.6	36
86	PP2A Dephosphorylates Elf-1 and Determines the Expression of CD3ζ and FcRγ in Human Systemic Lupus Erythematosus T Cells. Journal of Immunology, 2008, 181, 3658-3664.	0.4	52
87	Phosphorylated ERM Is Responsible for Increased T Cell Polarization, Adhesion, and Migration in Patients with Systemic Lupus Erythematosus. Journal of Immunology, 2007, 178, 1938-1947.	0.4	169
88	Increased Levels of NF-ATc2 Differentially Regulate CD154 and IL-2 Genes in T Cells from Patients with Systemic Lupus Erythematosus. Journal of Immunology, 2007, 178, 1960-1966.	0.4	79
89	Systemic lupus erythematosus: new molecular targets. Annals of the Rheumatic Diseases, 2007, 66, iii65-iii69.	O.5	22
90	Altered signal transduction in SLE T cells. Rheumatology, 2007, 46, 1525-1530.	0.9	48

#	Article	IF	CITATIONS
91	Elf-1 Binds to GGAA Elements on the FcRÎ ³ Promoter and Represses Its Expression. Journal of Immunology, 2007, 179, 4884-4889.	0.4	13
92	Increased expression of STAT3 in SLE T cells contributes to enhanced chemokine-mediated cell migration. Autoimmunity, 2007, 40, 1-8.	1.2	80
93	Post-Transcriptional Regulation of T Cell Receptor zeta Chain in Systemic Lupus Erythematosus. Clinical Immunology, 2007, 123, S66.	1.4	2
94	Syk kinase as a treatment target for therapy in autoimmune diseases. Clinical Immunology, 2007, 124, 235-237.	1.4	35
95	Calciphylaxis: A Pseudo-Vasculitis Syndrome. Seminars in Arthritis and Rheumatism, 2007, 36, 264-267.	1.6	17
96	cAMP response element modulator $\hat{l}\pm$ expression in patients with systemic lupus erythematosus. Lupus, 2006, 15, 840-844.	0.8	30
97	Systems biology in systemic lupus erythematosus: Integrating genes, biology and immune function. Autoimmunity, 2006, 39, 705-709.	1.2	45
98	Ocular manifestations of systemic lupus erythematosus: a clinical review. Lupus, 2006, 15, 3-12.	0.8	79
99	Immune cells and cytokines in systemic lupus erythematosus: an update. Current Opinion in Rheumatology, 2005, 17, 518-522.	2.0	80
100	New insights into the pathogenesis of systemic lupus erythematosus. Current Rheumatology Reports, 2005, 7, 469-475.	2.1	25
101	Gene Therapy in Systemic Lupus Erythematosus. Current Gene Therapy, 2005, 5, 677-684.	0.9	6
102	The Cyclic AMP Response Element Modulator Regulates Transcription of the TCR ζ-Chain. Journal of Immunology, 2005, 175, 5975-5980.	0.4	44
103	Increased Caspase-3 Expression and Activity Contribute to Reduced CD3ζ Expression in Systemic Lupus Erythematosus T Cells. Journal of Immunology, 2005, 175, 3417-3423.	0.4	67
104	Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV. Journal of Clinical Investigation, 2005, 115, 996-1005.	3.9	109
105	Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV. Journal of Clinical Investigation, 2005, 115, 996-1005.	3.9	199
106	Protein phosphatase 2A is a negative regulator of IL-2 production in patients with systemic lupus erythematosus. Journal of Clinical Investigation, 2005, 115, 3193-3204.	3.9	134
107	Down-Regulation of IL-2 Production in T Lymphocytes by Phosphorylated Protein Kinase A-RIIÎ ² . Journal of Immunology, 2004, 172, 7804-7812.	0.4	14
108	Cyclic Adenosine 5′-Monophosphate Response Element Modulator Is Responsible for the Decreased Expression of c-fos and Activator Protein-1 Binding in T Cells from Patients with Systemic Lupus Erythematosus. Journal of Immunology, 2004, 173, 3557-3563.	0.4	74

#	Article	IF	CITATIONS
109	Gene therapy in systemic lupus erythematosus. Lupus, 2004, 13, 353-358.	0.8	10
110	T lymphocytes in systemic lupus erythematosus: an update. Current Opinion in Rheumatology, 2004, 16, 548-552.	2.0	39
111	Uncovering the Genetics of Systemic Lupus Erythematosus. Molecular Diagnosis and Therapy, 2003, 3, 193-202.	3.3	5