Kazuo Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1269652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. Journal of Power Sources, 2011, 196, 764-767.	7.8	326
2	Dynamic Visualization of the Electric Potential in an Allâ€Solidâ€State Rechargeable Lithium Battery. Angewandte Chemie - International Edition, 2010, 49, 4414-4417.	13.8	242
3	High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si. Electrochemistry Communications, 2011, 13, 509-512.	4.7	236
4	In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery. Journal of Power Sources, 2014, 260, 292-298.	7.8	217
5	Direct observation of lithium-ion movement around an in-situ-formed-negative-electrode/solid-state-electrolyte interface during initial charge–discharge reaction. Electrochemistry Communications, 2012, 20, 113-116.	4.7	68
6	Effects of sintering temperature on interfacial structure and interfacial resistance for all-solid-state rechargeable lithium batteries. Journal of Power Sources, 2016, 325, 584-590.	7.8	62
7	Quantitative <i>Operando</i> Visualization of Electrochemical Reactions and Li Ions in All-Solid-State Batteries by STEM-EELS with Hyperspectral Image Analyses. Nano Letters, 2018, 18, 5892-5898.	9.1	56
8	Direct visualization of dipolar ferromagnetic domain structures in Co nanoparticle monolayers by electron holography. Applied Physics Letters, 2008, 93, 082502.	3.3	55
9	Dipolar ferromagnetic phase transition in Fe3O4 nanoparticle arrays observed by Lorentz microscopy and electron holography. Applied Physics Letters, 2011, 98, .	3.3	55
10	Preparation of thick-film LiNi1/3Co1/3Mn1/3O2 electrodes by aerosol deposition and its application to all-solid-state batteries. Journal of Power Sources, 2014, 272, 1086-1090.	7.8	49
11	Dynamic imaging of lithium in solid-state batteries by operando electron energy-loss spectroscopy with sparse coding. Nature Communications, 2020, 11, 2824.	12.8	49
12	Electrochemical properties of an all-solid-state lithium-ion battery with an in-situ formed electrode material grown from a lithium conductive glass ceramics sheet. Journal of Power Sources, 2013, 241, 583-588.	7.8	47
13	Direct Observation of a Liâ€lonic Spaceâ€Charge Layer Formed at an Electrode/Solidâ€Electrolyte Interface. Angewandte Chemie - International Edition, 2019, 58, 5292-5296.	13.8	43
14	Nano-scale simultaneous observation of Li-concentration profile and Ti-, O electronic structure changes in an all-solid-state Li-ion battery by spatially-resolved electron energy-loss spectroscopy. Journal of Power Sources, 2014, 266, 414-421.	7.8	41
15	Crystallographic features related to a van der Waals coupling in the layered chalcogenide FePS3. Journal of Applied Physics, 2016, 120, .	2.5	41
16	Visualization of Lithium Transfer Resistance in Secondary Particle Cathodes of Bulk-Type Solid-State Batteries. ACS Energy Letters, 2020, 5, 2098-2105.	17.4	38
17	In situ electron holography of electric potentials inside a solid-state electrolyte: Effect of electric-field leakage. Ultramicroscopy, 2017, 178, 20-26.	1.9	36
18	Electron holographic observation of micro-magnetic fields current-generated from single carbon coil. Ultramicroscopy, 2006, 106, 314-319.	1.9	30

Кагио Үамамото

#	Article	IF	CITATIONS
19	Vortex magnetic structure in framboidal magnetite reveals existence of water droplets in an ancient asteroid. Nature Communications, 2013, 4, 2649.	12.8	30
20	Direct observation of dopant distribution in GaAs compound semiconductors using phase-shifting electron holography and Lorentz microscopy. Microscopy (Oxford, England), 2014, 63, 235-242.	1.5	26
21	Off-axis electron holography without Fresnel fringes. Ultramicroscopy, 2004, 101, 265-269.	1.9	24
22	Direct Observation of a Liâ€lonic Spaceâ€Charge Layer Formed at an Electrode/Solidâ€Electrolyte Interface. Angewandte Chemie, 2019, 131, 5346-5350.	2.0	23
23	Lithium Transport Pathways Guided by Grain Architectures in Ni-Rich Layered Cathodes. ACS Nano, 2021, 15, 19806-19814.	14.6	23
24	Electron holography of single-crystal iron nanorods encapsulated in carbon nanotubes. Journal of Applied Physics, 2007, 101, 014323.	2.5	21
25	Hologram simulation for off-axis electron holography. Ultramicroscopy, 2000, 85, 35-49.	1.9	19
26	Characterization of grain-boundary phases in Li7La3Zr2O12 solid electrolytes. Materials Characterization, 2014, 91, 101-106.	4.4	17
27	<i>Operando</i> observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography. Microscopy (Oxford, England), 2017, 66, 50-61.	1.5	17
28	Precise measurement of electric potential, field, and charge density profiles across a biased GaAs p-n tunnel junction by in situ phase-shifting electron holography. Journal of Applied Physics, 2017, 122, 225702.	2.5	17
29	Sparse coding and dictionary learning for electron hologram denoising. Ultramicroscopy, 2019, 206, 112818.	1.9	17
30	Reconstruction technique for off-axis electron holography using coarse fringes. Ultramicroscopy, 2006, 106, 486-491.	1.9	16
31	Quantitative electric field mapping of a p–n junction by DPC STEM. Ultramicroscopy, 2020, 216, 113033.	1.9	15
32	Evaluation of high-precision phase-shifting electron holography by using hologram simulation. Surface and Interface Analysis, 2003, 35, 60-65.	1.8	14
33	Development of advanced electron holographic techniques and application to industrial materials and devices. Microscopy (Oxford, England), 2013, 62, S29-S41.	1.5	14
34	Rapid lowâ€ŧemperature synthesis of tetragonal singleâ€phase Li ₇ La ₃ Zr ₂ O ₁₂ . Journal of the American Ceramic Society, 2017, 100, 1313-1319.	3.8	13
35	Electric shielding films for biased TEM samples and their application to in situ electron holography. Microscopy (Oxford, England), 2018, 67, 178-186.	1.5	13
36	Lorentz Microscopy of Magnetic Granular Films. Physical Review Letters, 1999, 83, 1038-1041.	7.8	12

Кагио Үамамото

#	Article	IF	CITATIONS
37	Accurate measurement of electric potentials in biased GaAs compound semiconductors by phase-shifting electron holography. Microscopy (Oxford, England), 2019, 68, 159-166.	1.5	12
38	Visualization of Electrochemical Reactions in All-Solid-State Li-Ion Batteries by Spatially Resolved Electron Energy-Loss Spectroscopy and Electron Holography. Materials Transactions, 2015, 56, 617-624.	1.2	11
39	Denoising of series electron holograms using tensor decomposition. Microscopy (Oxford, England), 2021, 70, 255-264.	1.5	10
40	Dynamical observation of lithium insertion/extraction reaction during charge–discharge processes in Li-ion batteries by <i>in situ</i> spatially resolved electron energy-loss spectroscopy. Microscopy (Oxford, England), 2015, 64, 401-408.	1.5	9
41	Advanced electron holography techniques for in situ observation of solid-state lithium ion conductors. Ultramicroscopy, 2017, 173, 64-70.	1.9	9
42	Simulation-Trained Sparse Coding for High-Precision Phase Imaging in Low-Dose Electron Holography. Microscopy and Microanalysis, 2020, 26, 429-438.	0.4	8
43	Denoising electron holograms using the wavelet hidden Markov model for phase retrieval—Applications to the phase-shifting method. AIP Advances, 2021, 11, .	1.3	8
44	Phase-shifting electron holography for accurate measurement of potential distributions in organic and inorganic semiconductors. Microscopy (Oxford, England), 2021, 70, 24-38.	1.5	8
45	Phase-shifting electron holography for atomic image reconstruction. Journal of Electron Microscopy, 2010, 59, S81-S88.	0.9	7
46	Visualization of different carrier concentrations in n-type-GaN semiconductors by phase-shifting electron holography with multiple electron biprisms. Microscopy (Oxford, England), 2020, 69, 1-10.	1.5	4
47	High Precision Phase-Shifting Electron Holography with Multiple Biprisms for GaN Semiconductor Devices. Microscopy and Microanalysis, 2018, 24, 1554-1555.	0.4	3
48	Computational evaluation of sparse coding on off-axis electron holograms: comparison between charge-coupled device and direct-detection device cameras. Microscopy (Oxford, England), 2021, , .	1.5	3
49	Visualization of depletion layer in AlGaN homojunction p–n junction. Applied Physics Express, 0, , .	2.4	3
50	Electron Holography Details the Tagish Lake Parent Body and Implies Early Planetary Dynamics of the Solar System. Astrophysical Journal Letters, 2021, 917, L5.	8.3	2
51	Electrically Conductive and Mechanically Elastic Titanium Nitride Ceramic Microsprings. Journal of Nanoscience and Nanotechnology, 2014, 14, 4292-4296.	0.9	1
52	B23-P-10Visualization of two-dimensional potential map in organic electroluminescent materials with phase-shifting electron holography. Microscopy (Oxford, England), 2015, 64, i116.2-i116.	1.5	1
53	Advanced electron holography techniques for in situ observation of solid-state lithium ion conductors. Ultramicroscopy, 2017, 176, 86-92.	1.9	1
54	Direct visualization of electric potential distribution in organic light emitting diode by phase-shifting electron holography. Applied Physics Express, 2021, 14, 075007.	2.4	1

Кагио Үамамото

#	Article	IF	CITATIONS
55	B23-O-12Visualization of potential map in a thin-film solar cell by high sensitivity phase-shifting electron holography. Microscopy (Oxford, England), 2015, 64, i58.2-i58.	1.5	0
56	Electrochemical reactions in an all-solid-state Li-ion battery observed by ex situ and in situ spatially-resolved TEM EELS. Microscopy and Microanalysis, 2015, 21, 1191-1192.	0.4	0
57	Analysis of GaAs Compound Semiconductors and the Semiconductor Laser Diode using Off-Axis Electron Holography, Lorentz Microscopy, Electron Diffraction Microscopy and Differential Phase Contrast STEM. Microscopy and Microanalysis, 2015, 21, 1975-1976.	0.4	0
58	B12-P-02Electron Holography Analysis with 3D Computer Simulation for Observing Potential Profile around Electrode/Solid-Electrolyte Interfaces. Microscopy (Oxford, England), 2015, 64, i86.1-i86.	1.5	0
59	Precise Potential Observation of a Biased GaAs p-n Junction by <i>in situ</i> Phase-shifting Electron Holography. Materia Japan, 2019, 58, 101-101.	0.1	0
60	Accurate Measurement of Electric Potential Distributions at the Interfaces in Solids Using Phase-shifting Electron Holography. Microscopy and Microanalysis, 2020, 26, 1956-1957.	0.4	0
61	Direct visualization of the photovoltaic effect in a single-junction GaAs cell via <i>in situ</i> electron holography, Journal of Applied Physics, 2020, 128, .	2.5	0