Stephen J Geier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/126956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diboron(4) Compounds: From Structural Curiosity to Synthetic Workhorse. Chemical Reviews, 2016, 116, 9091-9161.	47.7	835
2	Selective adsorption of ethylene over ethane and propylene over propane in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn). Chemical Science, 2013, 4, 2054.	7.4	398
3	Lutidine/B(C ₆ F ₅) ₃ : At the Boundary of Classical and Frustrated Lewis Pair Reactivity. Journal of the American Chemical Society, 2009, 131, 3476-3477.	13.7	307
4	Metal-Free Catalytic Hydrogenation of Polar Substrates by Frustrated Lewis Pairs. Inorganic Chemistry, 2011, 50, 12338-12348.	4.0	297
5	Reversible CO Binding Enables Tunable CO/H ₂ and CO/N ₂ Separations in Metal–Organic Frameworks with Exposed Divalent Metal Cations. Journal of the American Chemical Society, 2014, 136, 10752-10761.	13.7	210
6	M ₂ (<i>m</i> -dobdc) (M = Mg, Mn, Fe, Co, Ni) Metal–Organic Frameworks Exhibiting Increased Charge Density and Enhanced H ₂ Binding at the Open Metal Sites. Journal of the American Chemical Society, 2014, 136, 12119-12129.	13.7	207
7	Metal-free reductions of N-heterocycles via Lewis acid catalyzed hydrogenation. Chemical Communications, 2010, 46, 4884.	4.1	198
8	Activation of H ₂ by Phosphinoboranes R ₂ PB(C ₆ F ₅) ₂ . Journal of the American Chemical Society, 2008, 130, 12632-12633.	13.7	180
9	From Classical Adducts to Frustrated Lewis Pairs: Steric Effects in the Interactions of Pyridines and B(C ₆ F ₅) ₃ . Inorganic Chemistry, 2009, 48, 10466-10474.	4.0	122
10	Frustrated Lewis Pairs and Ring-Opening of THF, Dioxane, and Thioxane. Organometallics, 2010, 29, 5310-5319.	2.3	92
11	Solid-State Chlorine NMR of Group IV Transition Metal Organometallic Complexes. Journal of the American Chemical Society, 2009, 131, 3317-3330.	13.7	85
12	Synthesis and Reactivity of the Phosphinoboranes R ₂ PB(C ₆ F ₅) ₂ . Inorganic Chemistry, 2011, 50, 336-344.	4.0	75
13	Probing substituent effects on the activation of H2 by phosphorus and boron frustrated Lewis pairs. Dalton Transactions, 2010, 39, 4285.	3.3	73
14	The Phosphinoboration Reaction. Angewandte Chemie - International Edition, 2015, 54, 2121-2125.	13.8	61
15	New Strategies to Phosphino–Phosphonium Cations and Zwitterions. Chemistry - A European Journal, 2010, 16, 988-993.	3.3	57
16	Borohydrides from Organic Hydrides: Reactions of Hantzsch's Esters with B(C ₆ F ₅) ₃ . Chemistry - A European Journal, 2010, 16, 4895-4902.	3.3	54
17	Rh-catalyzed P–P bond activation. Chemical Communications, 2008, , 99-101.	4.1	39
18	Current Developments in the Catalyzed Hydroboration Reaction. ACS Symposium Series, 2016, , 209-225.	0.5	39

Stephen J Geier

#	Article	IF	CITATIONS
19	The Phosphinoboration of <i>N</i> â€Heterocycles. Chemistry - A European Journal, 2017, 23, 14485-14499.	3.3	35
20	Activation of P5R5 (R = Ph, Et) by a Rh- $\hat{1}^2$ -diketiminate complex. Chemical Communications, 2008, , 2779.	4.1	34
21	Lewis acid mediated P–P bond hydrogenation and hydrosilylation. Chemical Communications, 2010, 46, 1026.	4.1	33
22	Ring openings of lactone and ring contractions of lactide by frustrated Lewis pairs. Dalton Transactions, 2011, 40, 6771.	3.3	32
23	Synthesis, Characterization, and Reactivity of Rhodium(I) Acetylacetonato Complexes Containing Pyridinecarboxaldimine Ligands. Inorganic Chemistry, 2008, 47, 8727-8735.	4.0	28
24	Bulky rhodium diimine complexes for the catalyzed borylation of vinylarenes. Inorganic Chemistry Communication, 2006, 9, 788-791.	3.9	26
25	Dehydrogenative borylation: the dark horse in metal-catalyzed hydroborations and diborations?. Reviews in Inorganic Chemistry, 2015, 35, 69-79.	4.1	26
26	Thioboration of α,β-Unsaturated Ketones and Aldehydes toward the Synthesis of β-Sulfido Carbonyl Compounds. Journal of Organic Chemistry, 2015, 80, 2148-2154.	3.2	25
27	Novel rhodium complexes containing a bulky iminophosphine ligand and their use as catalysts for the hydroboration of vinylarenes. Inorganica Chimica Acta, 2006, 359, 2771-2779.	2.4	21
28	Chloro- and phenoxy-phosphines in frustrated Lewis pair additions to alkynes. Dalton Transactions, 2012, 41, 237-242.	3.3	19
29	The phosphinoboration of carbodiimides, isocyanates, isothiocyanates and CO2. Dalton Transactions, 2017, 46, 10876-10885.	3.3	19
30	The phosphinoboration of acyl chlorides. Dalton Transactions, 2020, 49, 5092-5099.	3.3	16
31	Reactions of substituted pyridines with electrophilic boranes. Dalton Transactions, 2012, 41, 2131-2139.	3.3	14
32	Reaction of sterically encumbered phenols, TEMPO-H, and organocarbonyl insertion reactions with L-AlH ₂ (L = HC(MeCNDipp) ₂ , Dipp = 2,6-diisopropylphenyl). RSC Advances, 2017, 7, 37315-37323.	3.6	14
33	Antimicrobial and antimycobacterial activities of aliphatic amines derived from vanillin. Canadian Journal of Chemistry, 2015, 93, 1305-1311.	1.1	11
34	The phosphinoboration of 2-diphenylphosphino benzaldehyde and related aldimines. Journal of Organometallic Chemistry, 2019, 880, 378-385.	1.8	11
35	Rhodium complexes containing arylspiroborates derived from 3,5-di-tert-butylcatechol and their use in catalyzed hydroborations. Polyhedron, 2013, 52, 1181-1189.	2.2	9
36	Anti-mycobacterial activities of copper(II) complexes. Part II. Lipophilic hydroxypyridinones derived from maltol. Canadian Journal of Chemistry, 2015, 93, 334-340.	1.1	8

Stephen J Geier

#	Article	IF	CITATIONS
37	Synthesis and antimicrobial properties of cyclic fluorodiamines containing boronate esters. Heteroatom Chemistry, 2017, 28, .	0.7	7
38	The hydroboration of α-diimines. New Journal of Chemistry, 2021, 45, 14908-14912.	2.8	2
39	Hydroboration of Vinyl Arenes Using SiO2-Supported Rhodium Catalysts. Synlett, 2009, 2009, 477-481.	1.8	1
40	Synthesis and Reactivity of Novel Boranes Derived from Bulky Salicylaldimines: The Molecular Structure of a Maltolato Compound. Crystals, 2015, 5, 91-99.	2.2	1