Joaquim A G Silveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1269268/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding photosynthesis in a spatial–temporal multiscale: The need for a systemic view. Theoretical and Experimental Plant Physiology, 2021, 33, 113-124.	1.1	17
2	Transcriptional profiling and physiological responses reveal new insights into drought tolerance in a semiarid adapted species, Anacardium occidentale. Plant Biology, 2021, 23, 1074-1085.	1.8	0
3	H2O2Accumulation, Host Cell Death and Differential Levels of Proteins Related to Photosynthesis, Redox Homeostasis, and Required for Viral Replication Explain the Resistance of EMS-mutagenized Cowpea to Cowpea Severe Mosaic Virus. Journal of Plant Physiology, 2020, 245, 153110.	1.6	6
4	Nitrogen-utilization efficiency during early deficiency after a luxury consumptionÂis improved by sustaining nitrate reductase activity and photosynthesis in cotton plants. Plant and Soil, 2019, 443, 185-198.	1.8	9
5	Photoinhibition of Photosystem I Provides Oxidative Protection During Imbalanced Photosynthetic Electron Transport in Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 916.	1.7	53
6	High ammonium supply impairs photosynthetic efficiency in rice exposed to excess light. Photosynthesis Research, 2019, 140, 321-335.	1.6	17
7	The regulation of P700 is an important photoprotective mechanism to NaClâ€ s alinity in <scp><i>Jatropha curcas</i></scp> . Physiologia Plantarum, 2019, 167, 404-417.	2.6	19
8	Proteomic and physiological approaches reveal new insights for uncover the role of rice thylakoidal APX in response to drought stress. Journal of Proteomics, 2019, 192, 125-136.	1.2	18
9	Increase in assimilatory nitrate reduction and photorespiration enhances CO2 assimilation under high light-induced photoinhibition in cotton. Environmental and Experimental Botany, 2019, 159, 66-74.	2.0	17
10	Function and Compensatory Mechanisms Among the Components of the Chloroplastic Redox Network. Critical Reviews in Plant Sciences, 2019, 38, 1-28.	2.7	14
11	Mitochondrial glutathione peroxidase (OsGPX3) has a crucial role in rice protection against salt stress. Environmental and Experimental Botany, 2019, 158, 12-21.	2.0	28
12	Impairment of peroxisomal APX and CAT activities increases protection of photosynthesis under oxidative stress. Journal of Experimental Botany, 2019, 70, 627-639.	2.4	31
13	Photosynthesis impairment and oxidative stress in Jatropha curcas exposed to drought are partially dependent on decreased catalase activity. Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	23
14	Consequences of photosystemâ€I damage and repair on photosynthesis and carbon use in <i>Arabidopsis thaliana</i> . Plant Journal, 2019, 97, 1061-1072.	2.8	43
15	Antioxidant response of cowpea co-inoculated with plant growth-promoting bacteria under salt stress. Brazilian Journal of Microbiology, 2018, 49, 513-521.	0.8	55
16	Ascorbic acid toxicity is related to oxidative stress and enhanced by high light and knockdown of chloroplast ascorbate peroxidases in rice plants. Theoretical and Experimental Plant Physiology, 2018, 30, 41-55.	1.1	11
17	Thylakoidal APX modulates hydrogen peroxide content and stomatal closure in rice (Oryza sativa L.). Environmental and Experimental Botany, 2018, 150, 46-56.	2.0	20
18	Antioxidant protection and PSII regulation mitigate photo-oxidative stress induced by drought followed by high light in cashew plants. Environmental and Experimental Botany, 2018, 149, 59-69.	2.0	53

JOAQUIM A G SILVEIRA

#	Article	IF	CITATIONS
19	Changes induced by co-inoculation in nitrogen–carbon metabolism in cowpea under salinity stress. Brazilian Journal of Microbiology, 2018, 49, 685-694.	0.8	22
20	Flexibility of C4 decarboxylation and photosynthetic plasticity in sugarcane plants under shading. Environmental and Experimental Botany, 2018, 149, 34-42.	2.0	33
21	Integrated physiological analysis reveals that recovery capacity after salt stress withdrawal is a crucial mechanism for salt tolerance in soybean cultivars. Indian Journal of Plant Physiology, 2018, 23, 444-458.	0.8	1
22	Cyclic electron flow, <scp>NPQ</scp> and photorespiration are crucial for the establishment of young plants of <i>Ricinus communis</i> and <i>Jatropha curcas</i> exposed to drought. Plant Biology, 2017, 19, 650-659.	1.8	34
23	Gel-free/label-free proteomic, photosynthetic, and biochemical analysis of cowpea (Vigna unguiculata) Tj ETQq1 1 76-91.	0.784314 1.2	ł rgBT /Over 17
24	Rice peroxisomal ascorbate peroxidase knockdown affects ROS signaling and triggers early leaf senescence. Plant Science, 2017, 263, 55-65.	1.7	71
25	Photosynthetic and biochemical mechanisms of an EMS-mutagenized cowpea associated with its resistance to cowpea severe mosaic virus. Plant Cell Reports, 2017, 36, 219-234.	2.8	28
26	Increased sink strength offsets the inhibitory effect of sucrose on sugarcane photosynthesis. Journal of Plant Physiology, 2017, 208, 61-69.	1.6	29
27	Silenced rice in both cytosolic ascorbate peroxidases displays pre-acclimation to cope with oxidative stress induced by 3-aminotriazole-inhibited catalase. Journal of Plant Physiology, 2016, 201, 17-27.	1.6	34
28	Mitochondrial GPX1 silencing triggers differential photosynthesis impairment in response to salinity in rice plants. Journal of Integrative Plant Biology, 2016, 58, 737-748.	4.1	33
29	Salt-induced NO ₃ ⁻ uptake inhibition in cowpea roots is dependent on the ionic composition of the salt and its osmotic effect. Biologia Plantarum, 2016, 60, 731-740.	1.9	2
30	Salinity and osmotic stress trigger different antioxidant responses related to cytosolic ascorbate peroxidase knockdown in rice roots. Environmental and Experimental Botany, 2016, 131, 58-67.	2.0	29
31	Drought increases cowpea (Vigna unguiculata [L.] Walp.) susceptibility to cowpea severe mosaic virus (CPSMV) at early stage of infection. Plant Physiology and Biochemistry, 2016, 109, 91-102.	2.8	12
32	Proteomics, photosynthesis and salt resistance in crops: An integrative view. Journal of Proteomics, 2016, 143, 24-35.	1.2	66
33	Physiological adjustment to salt stress in <i><scp>J</scp>atropha curcas</i> is associated with accumulation of salt ions, transport and selectivity of <scp>K</scp> ⁺ , osmotic adjustment and <scp>K</scp> ⁺ / <scp>N</scp> a ⁺ homeostasis. Plant Biology, 2015 17 1023-1029	1.8	63
34	Photosynthetic and antioxidant responses to drought during sugarcane ripening. Photosynthetica, 2015, 53, 547-554.	0.9	34
35	Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity. Journal of Plant Physiology, 2015, 179, 113-121.	1.6	71
36	Peroxisomal <scp>APX</scp> knockdown triggers antioxidant mechanisms favourable for coping with high photorespiratory <scp>H</scp> ₂ <scp>O</scp> ₂ induced by <scp>CAT</scp> deficiency in rice. Plant, Cell and Environment, 2015, 38, 499-513.	2.8	36

#	Article	IF	CITATIONS
37	Photoprotective function of energy dissipation by thermal processes and photorespiratory mechanisms in Jatropha curcas plants during different intensities of drought and after recovery. Environmental and Experimental Botany, 2015, 110, 36-45.	2.0	70
38	Cytosolic <scp>APX</scp> knockdown rice plants sustain photosynthesis by regulation of protein expression related to photochemistry, Calvin cycle and photorespiration. Physiologia Plantarum, 2014, 150, 632-645.	2.6	19
39	Dissipation of excess photosynthetic energy contributes to salinity tolerance: A comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas. Journal of Plant Physiology, 2014, 171, 23-30.	1.6	61
40	Chloroplastic and mitochondrial GPX genes play a critical role in rice development. Biologia Plantarum, 2014, 58, 375-378.	1.9	30
41	Salt-induced delay in cotyledonary globulin mobilization is abolished by induction of proteases and leaf growth sink strength at late seedling establishment in cashew. Journal of Plant Physiology, 2014, 171, 1362-1371.	1.6	8
42	The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice. Plant Science, 2014, 214, 74-87.	1.7	81
43	Involvement of <i>ASR</i> genes in aluminium tolerance mechanisms in rice. Plant, Cell and Environment, 2013, 36, 52-67.	2.8	86
44	Minimization of oxidative stress in cowpea nodules by the interrelationship between Bradyrhizobium sp. and plant growth-promoting bacteria. Applied Soil Ecology, 2013, 64, 245-251.	2.1	26
45	Differences in Cowpea Root Growth Triggered by Salinity and Dehydration are Associated with Oxidative Modulation Involving Types I and III Peroxidases and Apoplastic Ascorbate. Journal of Plant Growth Regulation, 2013, 32, 376-387.	2.8	23
46	Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature. Plant Physiology and Biochemistry, 2013, 73, 326-336.	2.8	106
47	Contrasting Physiological Responses of Jatropha curcas Plants to Single and Combined Stresses of Salinity and Heat. Journal of Plant Growth Regulation, 2013, 32, 159-169.	2.8	62
48	Metabolism of nitrogen and carbon: Optimization of biological nitrogen fixation and cowpea development. Soil Biology and Biochemistry, 2013, 67, 226-234.	4.2	24
49	High K ⁺ supply avoids Na ⁺ toxicity and improves photosynthesis by allowing favorable K ⁺ : Na ⁺ ratios through the inhibition of Na ⁺ uptake and transport to the shoots of <i>Jatropha curcas</i> plants. Journal of Plant Nutrition and Soil Science, 2013, 176, 157-164	1.1	55
50	Rootstocks induce contrasting photosynthetic responses of orange plants to low night temperature without affecting the antioxidant metabolism. Theoretical and Experimental Plant Physiology, 2013, 25, 26-35.	1.1	19
51	Exogenous ornithine is an effective precursor and the δ-ornithine amino transferase pathway contributes to proline accumulation under high N recycling in salt-stressed cashew leaves. Journal of Plant Physiology, 2012, 169, 41-49.	1.6	76
52	Salt resistance in two cashew species is associated with accumulation of organic and inorganic solutes. Acta Physiologiae Plantarum, 2012, 34, 1629-1637.	1.0	13
53	High supply of NO3 â^' mitigates salinity effects through an enhancement in the efficiency of photosystem II and CO2 assimilation in Jatropha curcas plants. Acta Physiologiae Plantarum, 2012, 34, 2135-2143.	1.0	51
54	Coordinate changes in photosynthesis, sugar accumulation and antioxidative enzymes improve the performance of Jatropha curcas plants under drought stress. Biomass and Bioenergy, 2012, 45, 270-279.	2.9	67

JOAQUIM A G SILVEIRA

#	Article	IF	CITATIONS
55	Cross-scale multivariate analysis of physiological responses to high temperature in two tropical crops with C3 and C4 metabolism. Environmental and Experimental Botany, 2012, 80, 54-62.	2.0	32
56	Modulation of genes related to specific metabolic pathways in response to cytosolic ascorbate peroxidase knockdown in rice plants. Plant Biology, 2012, 14, 944-955.	1.8	17
57	Partial oxidative protection by enzymatic and non-enzymatic components in cashew leaves under high salinity. Biologia Plantarum, 2012, 56, 172-176.	1.9	30
58	Atividade de enzimas antioxidantes e inibição do crescimento radicular de feijão caupi sob diferentes nÃveis de salinidade. Acta Botanica Brasilica, 2012, 26, 342-349.	0.8	27
59	Aclimatação ao estresse salino em plantas de arroz induzida pelo pré-tratamento com H2O2. Revista Brasileira De Engenharia Agricola E Ambiental, 2011, 15, 416-423.	0.4	27
60	Salt stress induced damages on the photosynthesis of physic nut young plants. Scientia Agricola, 2011, 68, 62-68.	0.6	96
61	Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant, Cell and Environment, 2011, 34, 1705-1722.	2.8	106
62	Ascorbate peroxidaseâ€related (APxâ€R) is a new hemeâ€containing protein functionally associated with ascorbate peroxidase but evolutionarily divergent. New Phytologist, 2011, 191, 234-250.	3.5	57
63	High temperature positively modulates oxidative protection in salt-stressed cashew plants. Environmental and Experimental Botany, 2011, 74, 162-170.	2.0	29
64	Temperaturas elevadas afetam a distribuição de Ãons em plantas de feijão caupi pré-tratadas com NaCl1. Revista Brasileira De Engenharia Agricola E Ambiental, 2011, 15, 403-409.	0.4	5
65	Antioxidative enzymatic protection in leaves of two contrasting cowpea cultivars under salinity. Biologia Plantarum, 2010, 54, 159-163.	1.9	41
66	The role of organic and inorganic solutes in the osmotic adjustment of drought-stressed Jatropha curcas plants. Environmental and Experimental Botany, 2010, 69, 279-285.	2.0	129
67	Cytosolic APx knockdown indicates an ambiguous redox responses in rice. Phytochemistry, 2010, 71, 548-558.	1.4	115
68	Salt-induced changes in antioxidative enzyme activities in root tissues do not account for the differential salt tolerance of two cowpea cultivars. Brazilian Journal of Plant Physiology, 2010, 22, 113-122.	0.5	14
69	Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. Journal of Plant Physiology, 2010, 167, 1157-1164.	1.6	204
70	Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. Journal of Arid Environments, 2010, 74, 1130-1137.	1.2	153
71	Physiological alterations modulated by rootstock and scion combination in cashew under salinity. Scientia Horticulturae, 2010, 127, 39-45.	1.7	30
72	Influência de porta-enxertos na resistência de mudas de cajueiro ao estresse salino. Pesquisa Agropecuaria Brasileira, 2009, 44, 361-367.	0.9	22

#	Article	IF	CITATIONS
73	Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Environmental and Experimental Botany, 2009, 66, 1-8.	2.0	154
74	Involvement of cation channels and NH ₄ ⁺ -sensitive K ⁺ transporters in Na ⁺ uptake by cowpea roots under salinity. Biologia Plantarum, 2009, 53, 764-768.	1.9	13
75	Source–sink regulation of cotyledonary reserve mobilization during cashew (Anacardium) Tj ETQq1 1 0.784314	1 rgBT /Ove 1.6	erlock 10 Tf
76	Photochemical damage and comparative performance of superoxide dismutase and ascorbate peroxidase in sugarcane leaves exposed to paraquat-induced oxidative stress. Pesticide Biochemistry and Physiology, 2008, 90, 181-188.	1.6	76
77	Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. Journal of Plant Physiology, 2007, 164, 591-600.	1.6	139
78	Influência do tempo de aclimatação na resposta do cajueiro à salinidade. Revista Brasileira De Engenharia Agricola E Ambiental, 2007, 11, 173-179.	0.4	3
79	An aqueous suspension of Crinipellis perniciosa mycelium activates tomato defence responses against Xanthomonas vesicatoria. Crop Protection, 2007, 26, 729-738.	1.0	48
80	Acumulação de Ãons e metabolismo de N em cajueiro anão em meio salino. Revista Brasileira De Engenharia Agricola E Ambiental, 2007, 11, 125-133.	0.4	4
81	Induced defence responses and protective effects on tomato against Xanthomonas vesicatoria by an aqueous extract from Solanum lycocarpum infected with Crinipellis perniciosa. Biological Control, 2006, 39, 408-417.	1.4	24
82	Induction of an anionic peroxidase in cowpea leaves by exogenous salicylic acid. Journal of Plant Physiology, 2006, 163, 1040-1048.	1.6	42
83	Activities of antioxidant enzymes and photosynthetic responses in tomato pre-treated by plant activators and inoculated by Xanthomonas vesicatoria. Physiological and Molecular Plant Pathology, 2006, 68, 198-208.	1.3	58
84	Salinity tolerance of halophyte Atriplex nummularia L. grown under increasing NaCl levels. Revista Brasileira De Engenharia Agricola E Ambiental, 2006, 10, 848-854.	0.4	45
85	Photosynthetic responses of young cashew plants to varying environmental conditions. Pesquisa Agropecuaria Brasileira, 2005, 40, 735-744.	0.9	16
86	Storage of seeds of Cnidosculus phyllacanthus Pax & K. Hoffm Revista Brasileira De Engenharia Agricola E Ambiental, 2005, 9, 591-595.	0.4	1
87	Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in saltâ€stressed cowpea leaves. New Phytologist, 2004, 163, 563-571.	3.5	244
88	Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. Journal of Plant Physiology, 2003, 160, 115-123.	1.6	183
89	Plant growth, accumulation and solute partitioning of four forest species under salt stress. Revista Brasileira De Engenharia Agricola E Ambiental, 2003, 7, 258-262.	0.4	7
90	Nitrate reductase activity, distribution, and response to nitrate in two contrasting Phaseolus species inoculated with Rhizobium spp Environmental and Experimental Botany, 2001, 46, 37-46.	2.0	47

#	Article	IF	CITATIONS
91	Salinity-induced effects on nitrogen assimilation related to growth in cowpea plants. Environmental and Experimental Botany, 2001, 46, 171-179.	2.0	137