Lisa M Colosi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1269075/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Tracking Klebsiella pneumoniae carbapenemase gene as an indicator of antimicrobial resistance dissemination from a hospital to surface water via a municipal wastewater treatment plant. Water Research, 2022, 213, 118151.	5.3	25
2	Capture or curtail: The potential and performance of direct air capture powered through excess renewable electricity. Energy Conversion and Management: X, 2022, 15, 100230.	0.9	4
3	Building-Level Wastewater Surveillance for SARS-CoV-2 in Occupied University Dormitories as an Outbreak Forecasting Tool: One Year Case Study. ACS ES&T Water, 2022, 2, 2094-2104.	2.3	10
4	Accounting for the role of transport and storage infrastructure costs in carbon negative bioenergy deployment. , 2021, 11, 144-164.		8
5	The case for estimating carbon return on investment (CROI) for CCUS platforms. Applied Energy, 2021, 285, 116394.	5.1	27
6	Development of Wastewater Pooled Surveillance of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from Congregate Living Settings. Applied and Environmental Microbiology, 2021, 87, e0043321.	1.4	47
7	The levelized cost of negative CO2 emissions from thermochemical conversion of biomass coupled with carbon capture and storage. Energy Conversion and Management, 2021, 237, 114115.	4.4	38
8	Algae-mediated treatment offers apparent removal of a model antibiotic resistance gene. Algal Research, 2021, 60, 102540.	2.4	4
9	Is hydrothermal treatment coupled with carbon capture and storage an energy-producing negative emissions technology?. Energy Conversion and Management, 2020, 203, 112252.	4.4	66
10	Slow pyrolysis as a platform for negative emissions technology: An integration of machine learning models, life cycle assessment, and economic analysis. Energy Conversion and Management, 2020, 223, 113258.	4.4	119
11	Is aquatic bioenergy with carbon capture and storage a sustainable negative emission technology? Insights from a spatially explicit environmental life-cycle assessment. Energy Conversion and Management, 2020, 224, 113300.	4.4	31
12	Potable Reuse of Coalbed Methane-Produced Waters in Developing Country Contexts—Could the Benefits Outweigh the Costs to Facilitate Coal Transitions?. Energies, 2020, 13, 154.	1.6	2
13	Evaluating the efficacy of an algae-based treatment to mitigate elicitation of antibiotic resistance. Chemosphere, 2019, 237, 124421.	4.2	18
14	Life cycle analysis of power cycle configurations in bioenergy with carbon capture and storage. Procedia CIRP, 2019, 80, 340-345.	1.0	9
15	Attenuation, transport, and management of estrogens: A review. Chemosphere, 2019, 230, 462-478.	4.2	54
16	Evaluating the Impacts of ACP Management on the Energy Performance of Hydrothermal Liquefaction via Nutrient Recovery. Energies, 2019, 12, 729.	1.6	8
17	Water–energy sustainability synergies and health benefits as means to motivate potable reuse of coalbed methane-produced waters. Ambio, 2019, 48, 752-768.	2.8	8
18	Evaluating the Water Quality Impacts of Hydrothermal Liquefaction Assessment of Carbon, Nitrogen, and Energy Recovery. Bioresource Technology Reports, 2018, 2, 115-120.	1.5	18

LISA M COLOSI

#	Article	IF	CITATIONS
19	Economic evaluation of algae biodiesel based on meta-analyses. International Journal of Sustainable Energy, 2017, 36, 682-694.	1.3	12
20	Anaerobic Digestion of Algae Biomass to Produce Energy during Wastewater Treatment. Water Environment Research, 2016, 88, 29-39.	1.3	18
21	Reevaluation of the global warming impacts of algae-derived biofuels to account for possible contributions of nitrous oxide. Bioresource Technology, 2016, 218, 196-201.	4.8	22
22	Risk Analysis of Biofuels Industry for Aviation with Scenarioâ€Based Expert Elicitation. Systems Engineering, 2015, 18, 178-191.	1.6	36
23	Life Cycle Assessment of Biofuels from Algae Hydrothermal Liquefaction: The Upstream and Downstream Factors Affecting Regulatory Compliance. Energy & Fuels, 2015, 29, 1653-1661.	2.5	58
24	Assessing the energy and environmental performance of algae-mediated tertiary treatment of estrogenic compounds. Environmental Sciences: Processes and Impacts, 2015, 17, 421-428.	1.7	13
25	Evaluating Removal of Steroid Estrogens by a Model Alga as a Possible Sustainability Benefit of Hypothetical Integrated Algae Cultivation and Wastewater Treatment Systems. ACS Sustainable Chemistry and Engineering, 2014, 2, 2544-2553.	3.2	80
26	Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction. Bioresource Technology, 2013, 148, 163-171.	4.8	215
27	Practical ambiguities during calculation of energy ratios and their impacts on life cycle assessment calculations. Energy Policy, 2013, 57, 630-633.	4.2	38
28	Effects of sorption kinetics on the fate and transport of pharmaceuticals in estuaries. Chemosphere, 2013, 92, 1001-1009.	4.2	14
29	Environmental and economic assessment of integrated systems for dairy manure treatment coupled with algae bioenergy production. Bioresource Technology, 2013, 130, 486-494.	4.8	51
30	Life Cycle Assessment of Algae-to-Energy Systems. , 2013, , 759-778.		2
31	Transformation and Removal of Tetrabromobisphenol A from Water in the Presence of Natural Organic Matter via Laccase-Catalyzed Reactions: Reaction Rates, Products, and Pathways. Environmental Science & Technology, 2013, 47, 1001-1008.	4.6	107
32	Evaluating the Sustainability of Ceramic Filters for Point-of-Use Drinking Water Treatment. Environmental Science & Technology, 2013, 47, 11206-11213.	4.6	82
33	What are we missing by focusing on algae biodiesel?. Biofuels, 2013, 4, 591-593.	1.4	2
34	Evaluation of a Prediction Model for Influent Pharmaceutical Concentrations. Journal of Environmental Engineering, ASCE, 2013, 139, 1017-1021.	0.7	4
35	Will algae produce the green? Using published life cycle assessments as a starting point for economic evaluation of future algae-to-energy systems. Biofuels, 2012, 3, 129-142.	1.4	14
36	Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach. Bioresource Technology, 2012, 126, 298-306.	4.8	111

LISA M COLOSI

#	Article	IF	CITATIONS
37	Predicting EDC concentrations in a river mixing zone. Chemosphere, 2012, 87, 1111-1118.	4.2	10
38	Fate and transport of atorvastatin and simvastatin drugs during conventional wastewater treatment. Chemosphere, 2012, 88, 1184-1189.	4.2	42
39	Algae biodiesel has potential despite inconclusive results to date. Bioresource Technology, 2012, 104, 803-806.	4.8	104
40	Molecular similarity analysis as tool to prioritize research among emerging contaminants in the environment. Separation and Purification Technology, 2012, 84, 22-28.	3.9	4
41	Response to Comment on "Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks― Environmental Science & Technology, 2011, 45, 834-834.	4.6	9
42	Environmental Impacts of Algae-Derived Biodiesel and Bioelectricity for Transportation. Environmental Science & Technology, 2011, 45, 7554-7560.	4.6	192
43	Understanding Ligninase-Mediated Reactions of Endocrine Disrupting Chemicals in Water: Reaction Rates and Quantitative Structure–Activity Relationships. Environmental Science & Technology, 2011, 45, 5966-5972.	4.6	7
44	Peroxidase-mediated removal of endocrine disrupting compound mixtures from water. Chemosphere, 2011, 85, 553-557.	4.2	23
45	Assessment of Estrogenicity and Estrogenicity Drivers in a WWTP Mixing Zone. , 2010, , .		1
46	Development and Application of a Model to Estimate Wastewater Treatment Plant Prescription Pharmaceutical Influent Loadings and Concentrations. Bulletin of Environmental Contamination and Toxicology, 2010, 84, 507-512.	1.3	34
47	QSAR-assisted design of an environmental catalyst for enhanced estrogen remediation. Chemosphere, 2010, 81, 897-903.	4.2	12
48	Sorption of Statin Pharmaceuticals to Wastewater-Treatment Biosolids, Terrestrial Soils, and Freshwater Sediment. Journal of Environmental Engineering, ASCE, 2010, 136, 256-264.	0.7	15
49	Response to Comment on "Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks― Environmental Science & Technology, 2010, 44, 3643-3643.	4.6	5
50	Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks. Environmental Science & Technology, 2010, 44, 1813-1819.	4.6	944
51	Putting algae's promise into perspective. Biofuels, 2010, 1, 805-808.	1.4	9
52	Generation of Branched-Chain Fatty Acids through Lipoate-Dependent Metabolism Facilitates Intracellular Growth of <i>Listeria monocytogenes</i> . Journal of Bacteriology, 2009, 191, 2187-2196.	1.0	27
53	Peroxidaseâ€mediated degradation of perfluorooctanoic acid. Environmental Toxicology and Chemistry, 2009, 28, 264-271.	2.2	47
54	Peroxidase-Mediated Removal of a Polychlorinated Biphenyl Using Natural Organic Matter as the Sole Cosubstrate. Environmental Science & Technology, 2007, 41, 891-896.	4.6	42

#	Article	IF	CITATIONS
55	Validation of a twoâ€parameter quantitative structure–activity relationship as a legitimate tool for rational reâ€design of horseradish peroxidase. Biotechnology and Bioengineering, 2007, 98, 295-299.	1.7	6
56	Quantitative Structureâ^'Activity Relationship Based Quantification of the Impacts of Enzymeâ^'Substrate Binding on Rates of Peroxidase-Mediated Reactions of Estrogenic Phenolic Chemicals. Journal of the American Chemical Society, 2006, 128, 4041-4047.	6.6	47