
David M Romps

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1268536/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Closure for the Virtual Origin of Turbulent Plumes. Journals of the Atmospheric Sciences, 2022, 79, 1459-1471.	0.6	2
2	Why the Forcing from Carbon Dioxide Scales as the Logarithm of Its Concentration. Journal of Climate, 2022, 35, 4027-4047.	1.2	10
3	Perspective Is Everything. Inference, 2022, 7, .	0.0	0
4	Extending the Heat Index. Journal of Applied Meteorology and Climatology, 2022, 61, 1367-1383.	0.6	6
5	Ascending Columns, WTG, and Convective Aggregation. Journals of the Atmospheric Sciences, 2021, 78, 497-508.	0.6	3
6	Future increases in Arctic lightning and fire risk for permafrost carbon. Nature Climate Change, 2021, 11, 404-410.	8.1	103
7	Accurate Expressions for the Dewpoint and Frost Point Derived from the Rankine–Kirchhoff Approximations. Journals of the Atmospheric Sciences, 2021, 78, 2113-2116.	0.6	1
8	Identifying insects, clouds, and precipitation using vertically pointing polarimetric radar Doppler velocity spectra. Atmospheric Measurement Techniques, 2021, 14, 4425-4444.	1.2	3
9	Summertime Continental Shallow Cumulus Cloud Detection Using GOES-16 Satellite and Ground-Based Stereo Cameras at the DOE ARM Southern Great Plains Site. Remote Sensing, 2021, 13, 2309.	1.8	2
10	On the Life Cycle of a Shallow Cumulus Cloud: Is It a Bubble or Plume, Active or Forced?. Journals of the Atmospheric Sciences, 2021, 78, 2823-2833.	0.6	5
11	Utilizing a Storm-Generating Hotspot to Study Convective Cloud Transitions: The CACTI Experiment. Bulletin of the American Meteorological Society, 2021, 102, E1597-E1620.	1.7	30
12	The Rankine–Kirchhoff approximations for moist thermodynamics. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 3493-3497.	1.0	6
13	Prediction for cloud spacing confirmed using stereo cameras. Journals of the Atmospheric Sciences, 2021, , .	0.6	2
14	Evolving CO ₂ Rather Than SST Leads to a Factor of Ten Decrease in GCM Convergence Time. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002505.	1.3	4
15	Clouds and Convective Selfâ€Aggregation in a Multimodel Ensemble of Radiativeâ€Convective Equilibrium Simulations. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002138.	1.3	86
16	Climate Sensitivity and the Direct Effect of Carbon Dioxide in a Limited-Area Cloud-Resolving Model. Journal of Climate, 2020, 33, 3413-3429.	1.2	14
17	Theory of tropical moist convection. , 2020, , 1-45.		1
18	Reconciling Differences Between Largeâ€Eddy Simulations and Doppler Lidar Observations of Continental Shallow Cumulus Cloudâ€Base Vertical Velocity. Geophysical Research Letters, 2019, 46, 11539-11547.	1.5	14

DAVID M ROMPS

#	Article	IF	CITATIONS
19	Climate news articles lack basic climate science. Environmental Research Communications, 2019, 1, 081002.	0.9	9
20	Formation of Tropical Anvil Clouds by Slow Evaporation. Geophysical Research Letters, 2019, 46, 492-501.	1.5	37
21	FAT or FiTT: Are Anvil Clouds or the Tropopause Temperature Invariant?. Geophysical Research Letters, 2019, 46, 1842-1850.	1.5	35
22	Evaluating the Future of Lightning in Cloudâ€Resolving Models. Geophysical Research Letters, 2019, 46, 14863-14871.	1.5	28
23	Acceleration of tropical cyclogenesis by self-aggregation feedbacks. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2930-2935.	3.3	57
24	On the Utility (or Futility) of Using Stable Water Isotopes to Constrain the Bulk Properties of Tropical Convection. Journal of Advances in Modeling Earth Systems, 2018, 10, 516-529.	1.3	4
25	Observing Clouds in 4D with Multiview Stereophotogrammetry. Bulletin of the American Meteorological Society, 2018, 99, 2575-2586.	1.7	15
26	CAPE Times P Explains Lightning Over Land But Not the Landâ€Ocean Contrast. Geophysical Research Letters, 2018, 45, 12,623.	1.5	41
27	Mean precipitation change from a deepening troposphere. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11465-11470.	3.3	53
28	Exact Expression for the Lifting Condensation Level. Journals of the Atmospheric Sciences, 2017, 74, 3891-3900.	0.6	90
29	Beyond the Rigid Lid: Baroclinic Modes in a Structured Atmosphere. Journals of the Atmospheric Sciences, 2017, 74, 3551-3566.	0.6	5
30	Methods for Estimating 2D Cloud Size Distributions from 1D Observations. Journals of the Atmospheric Sciences, 2017, 74, 3405-3417.	0.6	14
31	On the sizes and lifetimes of cold pools. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 1517-1527.	1.0	21
32	The Stochastic Parcel Model: A deterministic parameterization of stochastically entraining convection. Journal of Advances in Modeling Earth Systems, 2016, 8, 319-344.	1.3	34
33	Clausius–Clapeyron Scaling of CAPE from Analytical Solutions to RCE. Journals of the Atmospheric Sciences, 2016, 73, 3719-3737.	0.6	56
34	Tropical cloud buoyancy is the same in a world with or without ice. Geophysical Research Letters, 2016, 43, 3572-3579.	1.5	13
35	Reply to "Comments on â€~MSE minus CAPE is the True Conserved Variable for an Adiabatically Lifted Parcel'― Journals of the Atmospheric Sciences, 2016, 73, 2577-2583.	0.6	1
36	Effective buoyancy at the surface and aloft. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 811-820.	1.0	27

DAVID M ROMPS

#	Article	IF	CITATIONS
37	Stereo photogrammetry reveals substantial drag on cloud thermals. Geophysical Research Letters, 2015, 42, 5051-5057.	1.5	25
38	Why does tropical convective available potential energy (CAPE) increase with warming?. Geophysical Research Letters, 2015, 42, 10,429.	1.5	77
39	The origin of water vapor rings in tropical oceanic cold pools. Geophysical Research Letters, 2015, 42, 7825-7834.	1.5	42
40	Effective Buoyancy, Inertial Pressure, and the Mechanical Generation of Boundary Layer Mass Flux by Cold Pools. Journals of the Atmospheric Sciences, 2015, 72, 3199-3213.	0.6	58
41	Selfâ€consistency tests of largeâ€scale dynamics parameterizations for singleâ€column modeling. Journal of Advances in Modeling Earth Systems, 2015, 7, 320-334.	1.3	9
42	The Effect of Global Warming on Severe Thunderstorms in the United States. Journal of Climate, 2015, 28, 2443-2458.	1.2	89
43	Lagrangian Investigation of the Precipitation Efficiency of Convective Clouds. Journals of the Atmospheric Sciences, 2015, 72, 1045-1062.	0.6	30
44	Sticky Thermals: Evidence for a Dominant Balance between Buoyancy and Drag in Cloud Updrafts. Journals of the Atmospheric Sciences, 2015, 72, 2890-2901.	0.6	87
45	Observing atmospheric clouds through stereo reconstruction. Proceedings of SPIE, 2015, , .	0.8	1
46	MSE Minus CAPE is the True Conserved Variable for an Adiabatically Lifted Parcel. Journals of the Atmospheric Sciences, 2015, 72, 3639-3646.	0.6	31
47	Rayleigh Damping in the Free Troposphere. Journals of the Atmospheric Sciences, 2014, 71, 553-565.	0.6	25
48	Stereophotogrammetry of Oceanic Clouds. Journal of Atmospheric and Oceanic Technology, 2014, 31, 1482-1501.	0.5	13
49	An Improved Weak Pressure Gradient Scheme for Single-Column Modeling. Journals of the Atmospheric Sciences, 2014, 71, 2415-2429.	0.6	16
50	Projected increase in lightning strikes in the United States due to global warming. Science, 2014, 346, 851-854.	6.0	388
51	A Numerical Study of Methods for Moist Atmospheric Flows: Compressible Equations. Monthly Weather Review, 2014, 142, 4269-4283.	0.5	11
52	An Analytical Model for Tropical Relative Humidity. Journal of Climate, 2014, 27, 7432-7449.	1.2	109
53	Measurement of Convective Entrainment Using Lagrangian Particles. Journals of the Atmospheric Sciences, 2013, 70, 266-277.	0.6	45
54	Convective selfâ€aggregation, cold pools, and domain size. Geophysical Research Letters, 2013, 40, 994-998.	1.5	115

DAVID M ROMPS

#	Article	IF	CITATIONS
55	CAPE in Tropical Cyclones. Journals of the Atmospheric Sciences, 2012, 69, 2452-2463.	0.6	72
56	Numerical Tests of the Weak Pressure Gradient Approximation. Journals of the Atmospheric Sciences, 2012, 69, 2846-2856.	0.6	27
57	On the Equivalence of Two Schemes for Convective Momentum Transport. Journals of the Atmospheric Sciences, 2012, 69, 3491-3500.	0.6	19
58	Weak Pressure Gradient Approximation and Its Analytical Solutions. Journals of the Atmospheric Sciences, 2012, 69, 2835-2845.	0.6	36
59	A Transilient Matrix for Moist Convection. Journals of the Atmospheric Sciences, 2011, 68, 2009-2025.	0.6	34
60	Response of Tropical Precipitation to Global Warming. Journals of the Atmospheric Sciences, 2011, 68, 123-138.	0.6	144
61	A Direct Measure of Entrainment. Journals of the Atmospheric Sciences, 2010, 67, 1908-1927.	0.6	167
62	Do Undiluted Convective Plumes Exist in the Upper Tropical Troposphere?. Journals of the Atmospheric Sciences, 2010, 67, 468-484.	0.6	136
63	Nature versus Nurture in Shallow Convection. Journals of the Atmospheric Sciences, 2010, 67, 1655-1666.	0.6	94
64	lsotopic composition of water in the tropical tropopause layer in cloudâ€resolving simulations of an idealized tropical circulation. Journal of Geophysical Research, 2010, 115, .	3.3	75
65	Overshooting convection in tropical cyclones. Geophysical Research Letters, 2009, 36, .	1.5	54
66	Should the United States Resume Reprocessing? A Pro and Con. Bulletin of the Atomic Scientists, 2009, 65, 30-41.	0.2	0
67	The Dry-Entropy Budget of a Moist Atmosphere. Journals of the Atmospheric Sciences, 2008, 65, 3779-3799.	0.6	76
68	Supersymmetric branes inAdS2×S2×CY3. Physical Review D, 2005, 71, .	1.6	19
69	AdS solutions to the 2D type 0A effective action. Physical Review D, 2004, 70, .	1.6	5
70	Quantum Bousso bound. Physical Review D, 2004, 70, .	1.6	37
71	Descent relations in type-0A and type-0B theories. Physical Review D, 2002, 65, .	1.6	5
72	Extending the Heat Index to Quantify the Physiological Response to Future Warming: A Modelling Study. SSRN Electronic Journal, 0, , .	0.4	0