
Guo Baochun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1268515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colossal permittivity and low dielectric loss behaviors in (<i>Re</i> _{0.5} Nb _{0.5}) _{0.005} Ti _{0.995} O ₂ (<i>re</i> = La, Nd, Sm and Gd) ceramics. Ferroelectrics, 2022, 589, 35-44.	0.6	2
2	Influence of Zr dopant on polarization in rutile (In _{0.5} Nb _{0.5}) _{0.005} (Ti _{1â€} <i>_x</i> Zr <i>_{x ceramics. Journal of the American Ceramic Society, 2020, 103, 1854-1863.}</i>	:8b⊗ <td>>)<sub>0.995</td>	>)< s ub>0.995
3	Giant permittivity up to 100ÂMHz in La and Nb coâ€doped rutile TiO ₂ ceramics. Journal of the American Ceramic Society, 2020, 103, 4313-4320.	3.8	25
4	Low dielectric loss induced by annealing in (La0.5Nb0.5)0.005Ti0.995O2 colossal permittivity ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 2895-2903.	2.2	5
5	Colossal permittivity and dielectric relaxations in Tl + Nb co-doped TiO2 ceramics. Ceramics International, 2018, 44, 12137-12143.	4.8	66
6	Enhancement of breakdown electric field and DC bias of (In0.5Nb0.5)0.005(Ti1-xZrx)0.995O2 colossal permittivity ceramics. Journal of Alloys and Compounds, 2018, 740, 1108-1115.	5.5	25
7	Low-temperature sintering and microwave dielectric properties of Li4Mg3Ti2O9 ceramics by a sol–gel method. Journal of Materials Science: Materials in Electronics, 2018, 29, 10264-10268.	2.2	6
8	Stable colossal permittivity and low loss in (In0.5Nb0.5)0.005Ti0.995O2 + x mol% ZrTiO4 composite ceramics under DC bias voltage. Journal of Materials Science: Materials in Electronics, 2018, 29, 18441-18448.	2.2	6
9	Colossal permittivity and dielectric relaxations in (La0.5Nb0.5) Ti1-O2 ceramics. Journal of Alloys and Compounds, 2018, 768, 368-376.	5.5	33
10	Dielectric properties of (Bi0.5Nb0.5) Ti1-O2 ceramics with colossal permittivity. Journal of Alloys and Compounds, 2017, 722, 676-682.	5.5	51
11	Ultralow-fired Li 2 Mg 3 TiO 6 -Ca 0.8 Sr 0.2 TiO 3 composite ceramics withÂtemperature stable at microwave frequency. Journal of Alloys and Compounds, 2017, 709, 299-303.	5.5	34
12	Effect of Ti content on energy storage properties of (Pb0.87Ba0.10La0.02)(Zr0.60Sn0.40-xTix)O3 bulk ceramics. Ferroelectrics, 2017, 510, 152-160.	0.6	4
13	Microwave dielectric properties of low-fired Li2SnO3 ceramics co-doped with MgO–LiF. Materials Research Bulletin, 2016, 77, 78-83.	5.2	24
14	Microwave dielectric properties of low-fired Li2MnO3 ceramics co-doped with LiF–TiO2. Ceramics International, 2016, 42, 6005-6009.	4.8	15
15	Dielectric properties of ultralow-fired Mg4Nb2O9 ceramics co-doped with TiO2 and LiF. Journal of Materials Science: Materials in Electronics, 2016, 27, 1553-1557.	2.2	4
16	Microwave Dielectric Properties of CdWO4Ceramics Prepared by Using High-energy Ball-milling Method. Ferroelectrics, 2015, 474, 105-112.	0.6	2
17	Microwave dielectric properties of Mg4Nb2O9 ceramics with excess Mg(OH)2 produced by a reaction-sintering process. Ceramics International, 2015, 41, S572-S575.	4.8	8
18	Microwave dielectric properties of (1â^x)SiO2â^xTiO2 ceramics. Ceramics International, 2015, 41, S582-S587.	4.8	8

#	Article	IF	CITATIONS
19	Thermal stable microwave dielectric properties of CdWO4 ceramics prepared by high energy ball milling method. Journal of Alloys and Compounds, 2015, 650, 777-782.	5.5	7