List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/126845/publications.pdf Version: 2024-02-01

DAVID I KENNEDY

#	Article	IF	CITATIONS
1	Dynamic modeling of hospitalized COVID-19 patients reveals disease state–dependent risk factors. Journal of the American Medical Informatics Association: JAMIA, 2022, 29, 864-872.	4.4	1
2	A PON for All Seasons: Comparing Paraoxonase Enzyme Substrates, Activity and Action including the Role of PON3 in Health and Disease. Antioxidants, 2022, 11, 590.	5.1	10
3	As We Drink and Breathe: Adverse Health Effects of Microcystins and Other Harmful Algal Bloom Toxins in the Liver, Gut, Lungs and Beyond. Life, 2022, 12, 418.	2.4	35
4	Paraoxonase-1 Regulation of Renal Inflammation and Fibrosis in Chronic Kidney Disease. Antioxidants, 2022, 11, 900.	5.1	7
5	Dirty Jobs: Macrophages at the Heart of Cardiovascular Disease. Biomedicines, 2022, 10, 1579.	3.2	4
6	Vascular Calcification in Chronic Kidney Disease: Diversity in the Vessel Wall. Biomedicines, 2021, 9, 404.	3.2	34
7	Microcystin-LR (MC-LR) Triggers Inflammatory Responses in Macrophages. International Journal of Molecular Sciences, 2021, 22, 9939.	4.1	5
8	Budget constrained machine learning for early prediction of adverse outcomes for COVID-19 patients. Scientific Reports, 2021, 11, 19543.	3.3	6
9	Toward Revealing Microcystin Distribution in Mouse Liver Tissue Using MALDI-MS Imaging. Toxins, 2021, 13, 709.	3.4	3
10	Regulation of Na/K-ATPase expression by cholesterol: isoform specificity and the molecular mechanism. American Journal of Physiology - Cell Physiology, 2020, 319, C1107-C1119.	4.6	8
11	Getting to the Heart and Soul of Chronic Kidney Disease. Journal of the American Heart Association, 2020, 9, e017427.	3.7	3
12	Assessment of diagnostic biomarkers of liver injury in the setting of microcystin-LR (MC-LR) hepatotoxicity. Chemosphere, 2020, 257, 127111.	8.2	22
13	CD40 Receptor Knockout Protects against Microcystin-LR (MC-LR) Prolongation and Exacerbation of Dextran Sulfate Sodium (DSS)-Induced Colitis. Biomedicines, 2020, 8, 149.	3.2	9
14	Harmful Algal Bloom Toxicity in Lithobates catesbeiana Tadpoles. Toxins, 2020, 12, 378.	3.4	5
15	Renal Fibrosis Is Significantly Attenuated Following Targeted Disruption of <i>Cd40</i> in Experimental Renal Ischemia. Journal of the American Heart Association, 2020, 9, e014072.	3.7	11
16	Epithelial and Endothelial Adhesion of Immune Cells Is Enhanced by Cardiotonic Steroid Signaling Through Na ⁺ /K ⁺ â€ATPaseâ€Î±â€1. Journal of the American Heart Association, 2020, e013933.	9,3.7	9
17	Development and Application of Extraction Methods for LC-MS Quantification of Microcystins in Liver Tissue. Toxins, 2020, 12, 263.	3.4	13
18	A strategic expression method of miR-29b and its anti-fibrotic effect based on RNA-sequencing analysis. PLoS ONE, 2020, 15, e0244065.	2.5	8

#	Article	IF	CITATIONS
19	Impact of Comorbidities on SARS-CoV-2 Viral Entry-Related Genes. Journal of Personalized Medicine, 2020, 10, 146.	2.5	17
20	Paraoxonaseâ€1 regulation of Na/Kâ€ATPase alphaâ€1 Src signaling in Chronic Kidney Disease. FASEB Journal, 2020, 34, 1-1.	0.5	0
21	Abstract 16835: Targeted Disruption of Paraoxonase 3 in a Dahl Salt-Sensitive Rat Model of Chronic Kidney Disease Increases Renal Cortical Pro-Inflammatory Eicosanoids. Circulation, 2020, 142, .	1.6	1
22	Abstract 16965: Paraoxanase-1 Modulates Cardiotonic Steroid Induced Cardiac Inflammation and Fibrosis in Dahl Salt Sensitive Model of Chronic Kidney Disease. Circulation, 2020, 142, .	1.6	0
23	Circulating Lactonase Activity but Not Protein Level of PON-1 Predicts Adverse Outcomes in Subjects with Chronic Kidney Disease. Journal of Clinical Medicine, 2019, 8, 1034.	2.4	16
24	Exposure to the Harmful Algal Bloom (HAB) Toxin Microcystin-LR (MC-LR) Prolongs and Increases Severity of Dextran Sulfate Sodium (DSS)-Induced Colitis. Toxins, 2019, 11, 371.	3.4	29
25	Chronic Low Dose Oral Exposure to Microcystin-LR Exacerbates Hepatic Injury in a Murine Model of Non-Alcoholic Fatty Liver Disease. Toxins, 2019, 11, 486.	3.4	30
26	Proinflammatory Effects of Cardiotonic Steroids Mediated by NKA α-1 (Na+/K+-ATPase α-1)/Src Complex in Renal Epithelial Cells and Immune Cells. Hypertension, 2019, 74, 73-82.	2.7	7
27	The Effect of Electronic-Cigarette Vaping on Cardiac Function and Angiogenesis in Mice. Scientific Reports, 2019, 9, 4085.	3.3	51
28	Hyperglycemia induces key genetic and phenotypic changes in human liver epithelial HepG2 cells which parallel the Leprdb/J mouse model of non-alcoholic fatty liver disease (NAFLD). PLoS ONE, 2019, 14, e0225604.	2.5	16
29	CD36 Enhances Vascular Smooth Muscle Cell Proliferation and Development of Neointimal Hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 263-275.	2.4	35
30	Na/K-ATPase/src complex mediates regulation of CD40 in renal parenchyma. Nephrology Dialysis Transplantation, 2018, 33, 1138-1149.	0.7	15
31	Telocinobufagin, a Novel Cardiotonic Steroid, Promotes Renal Fibrosis via Na+/K+-ATPase Profibrotic Signaling Pathways. International Journal of Molecular Sciences, 2018, 19, 2566.	4.1	21
32	Cardiotonic Steroids and the Sodium Trade Balance: New Insights into Trade-Off Mechanisms Mediated by the Na+/K+-ATPase. International Journal of Molecular Sciences, 2018, 19, 2576.	4.1	32
33	Na/K-ATPase signaling mediates miR-29b-3p regulation and cardiac fibrosis formation in mice with chronic kidney disease. PLoS ONE, 2018, 13, e0197688.	2.5	36
34	Paraoxonase 2 prevents the development of heart failure. Free Radical Biology and Medicine, 2018, 121, 117-126.	2.9	21
35	Development and applications of solid-phase extraction and liquid chromatography-mass spectrometry methods for quantification of microcystins in urine, plasma, and serum. Journal of Chromatography A, 2018, 1573, 66-77.	3.7	27
36	Regulation of Cardiac Remodeling by Cardiac Na+/K+-ATPase Isoforms. Frontiers in Physiology, 2016, 7, 382.	2.8	38

#	Article	IF	CITATIONS
37	Cigarette smoking causes epigenetic changes associated with cardiorenal fibrosis. Physiological Genomics, 2016, 48, 950-960.	2.3	21
38	Protein Carbonylation of an Amino Acid Residue of the Na/Kâ€ATPase α1 Subunit Determines Na/Kâ€ATPase Signaling and Sodium Transport in Renal Proximal Tubular Cells. Journal of the American Heart Association, 2016, 5, .	3.7	32
39	Rapamycin Attenuates Cardiac Fibrosis in Experimental Uremic Cardiomyopathy by Reducing Marinobufagenin Levels and Inhibiting Downstream Proâ€Fibrotic Signaling. Journal of the American Heart Association, 2016, 5, .	3.7	33
40	Attenuation of Na/K-ATPase Mediated Oxidant Amplification with pNaKtide Ameliorates Experimental Uremic Cardiomyopathy. Scientific Reports, 2016, 6, 34592.	3.3	51
41	Na/K-ATPase signaling regulates collagen synthesis through microRNA-29b-3p in cardiac fibroblasts. Physiological Genomics, 2016, 48, 220-229.	2.3	47
42	Use of Surface-Enhanced Laser Desorption/Ionization with Time of Flight (SELDI-TOF) of the Urine in the Assessment of Acute Kidney Injury (AKI). Marshall Journal of Medicine, 2016, 2, .	0.1	0
43	CD36/SR-B2-TLR2 Dependent Pathways Enhance Porphyromonas gingivalis Mediated Atherosclerosis in the Ldlr KO Mouse Model. PLoS ONE, 2015, 10, e0125126.	2.5	37
44	Oxidized LDL–bound CD36 recruits an Na ⁺ /K ⁺ -ATPase–Lyn complex in macrophages that promotes atherosclerosis. Science Signaling, 2015, 8, ra91.	3.6	73
45	Elevated Plasma Marinobufagenin, An Endogenous Cardiotonic Steroid, Is Associated With Right Ventricular Dysfunction and Nitrative Stress in Heart Failure. Circulation: Heart Failure, 2015, 8, 1068-1076.	3.9	48
46	Gut Microbiota-Dependent Trimethylamine <i>N</i> -Oxide (TMAO) Pathway Contributes to Both Development of Renal Insufficiency and Mortality Risk in Chronic Kidney Disease. Circulation Research, 2015, 116, 448-455.	4.5	898
47	Plasma Ceruloplasmin, a Regulator of Nitric Oxide Activity, and Incident Cardiovascular Risk in Patients with CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 462-467.	4.5	18
48	Cardiotonic Steroids and Sodium Excretion in Heart Failure with Preserved Ejection Fraction. Journal of Cardiac Failure, 2014, 20, S79-S80.	1.7	1
49	Abstract 17746: Telecinobufagin, a Novel Cardiotonic Steroid, Promotes Myocardial and Renal Fibrosis via Na/K-ATPase Profibrotic Signalling Pathways. Circulation, 2014, 130, .	1.6	2
50	Increasing Serum Soluble Angiotensin-Converting Enzyme 2 Activity After Intensive Medical Therapy Is Associated With Better Prognosis in Acute Decompensated Heart Failure. Journal of Cardiac Failure, 2013, 19, 605-610.	1.7	25
51	Mitochondrial impairment in the five-sixth nephrectomy model of chronic renal failure: proteomic approach. BMC Nephrology, 2013, 14, 209.	1.8	35
52	Diminished Antioxidant Activity of High-Density Lipoprotein-Associated Proteins in Chronic Kidney Disease. Journal of the American Heart Association, 2013, 2, e000104-e000104.	3.7	61
53	CD36 and Na/K-ATPase-α1 Form a Proinflammatory Signaling Loop in Kidney. Hypertension, 2013, 61, 216-224.	2.7	84
54	Diminished Antioxidant Activity of Highâ€Density Lipoprotein–Associated Proteins in Chronic Kidney Disease. Journal of the American Heart Association, 2013, 2, .	3.7	26

#	Article	IF	CITATIONS
55	CD36 mediates proximal tubular binding and uptake of albumin and is upregulated in proteinuric nephropathies. American Journal of Physiology - Renal Physiology, 2012, 303, F1006-F1014.	2.7	40
56	Reactive Oxygen Species Modulation of Na/K-ATPase Regulates Fibrosis and Renal Proximal Tubular Sodium Handling. International Journal of Nephrology, 2012, 2012, 1-14.	1.3	52
57	Monoclonal antibody against marinobufagenin reverses cardiac fibrosis in rats with chronic renal failure. American Journal of Hypertension, 2012, 25, 690-696.	2.0	82
58	A CD36-dependent pathway enhances macrophage and adipose tissue inflammation and impairs insulin signalling. Cardiovascular Research, 2011, 89, 604-613.	3.8	158
59	Platelet Activation in Patients with Atherosclerotic Renal Artery Stenosis Undergoing Stent Revascularization. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 2185-2191.	4.5	13
60	Hematopoietic Cell–Restricted Deletion of CD36 Reduces High-Fat Diet–Induced Macrophage Infiltration and Improves Insulin Signaling in Adipose Tissue. Diabetes, 2011, 60, 1100-1110.	0.6	65
61	Endogenous cardiotonic steroids in chronic renal failure. Nephrology Dialysis Transplantation, 2011, 26, 2912-2919.	0.7	68
62	Pathogenic Role of Scavenger Receptor CD36 in the Metabolic Syndrome and Diabetes. Metabolic Syndrome and Related Disorders, 2011, 9, 239-245.	1.3	45
63	The cardiotonic steroid hormone marinobufagenin induces renal fibrosis: implication of epithelial-to-mesenchymal transition. American Journal of Physiology - Renal Physiology, 2009, 296, F922-F934.	2.7	61
64	Partial nephrectomy as a model for uremic cardiomyopathy in the mouse. American Journal of Physiology - Renal Physiology, 2008, 294, F450-F454.	2.7	96
65	Marinobufagenin Stimulates Fibroblast Collagen Production and Causes Fibrosis in Experimental Uremic Cardiomyopathy. Hypertension, 2007, 49, 215-224.	2.7	145
66	Ouabain decreases sarco(endo)plasmic reticulum calcium ATPase activity in rat hearts by a process involving protein oxidation. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H3003-H3011.	3.2	31
67	Quality of Life Improves After Renal Artery Stenting. Biological Research for Nursing, 2006, 8, 129-137.	1.9	3
68	Central Role for the Cardiotonic Steroid Marinobufagenin in the Pathogenesis of Experimental Uremic Cardiomyopathy. Hypertension, 2006, 47, 488-495.	2.7	246
69	Renal insufficiency as a predictor of adverse events and mortality after renal artery stent placement. American Journal of Kidney Diseases, 2003, 42, 926-935.	1.9	97
70	Effect of Chronic Renal Failure on Cardiac Contractile Function, Calcium Cycling, and Gene Expression of Proteins Important for Calcium Homeostasis in the Rat. Journal of the American Society of Nephrology: JASN, 2003, 14, 90-97.	6.1	77