
Vladimir Shayapov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1267670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hardness and Strengthening Effect of Low-Pressure Chemical Vapor Deposition BCxNy Coatings Deposited on Ti-6Al-4V Alloy. Journal of Materials Engineering and Performance, 2022, 31, 3792-3798.	2.5	1
2	CRYSTAL TEXTURE AND MECHANICAL STRESSES IN VO2 FILMS OBTAINED BY MOCVD. Journal of Structural Chemistry, 2022, 63, 235-241.	1.0	1
3	Investigation of the phase composition and photoluminescence of CVD (YxGdyEuz)2O3 films on Si substrates after annealing in the air. Journal of Luminescence, 2021, 233, 117842.	3.1	0
4	Tetranitratopalladate(II) Salts with Tetraalkylammonium Cations: Structural Aspects, Reactivity, and Applicability toward Palladium Deposition for Catalytic Applications. Inorganic Chemistry, 2021, 60, 2983-2995.	4.0	6
5	CHEMICAL STRUCTURE AND FUNCTIONAL PROPERTIES OF AMORPHOUS BORON CARBONITRIDE FILMS. Journal of Structural Chemistry, 2021, 62, 1309-1324.	1.0	2
6	Bismuth(III) Iodide Complexes with 1-Ethyl-4-Dimethylaminopyridinium: Structure, Thermal Stability, and Optical Properties. Russian Journal of Inorganic Chemistry, 2021, 66, 1482-1487.	1.3	3
7	Films of (Gd1 –xTbx)2O2S Solid Solutions Produced by Oxide Sulfidation in NH4SCN Vapor and Their Optical Properties. Inorganic Materials, 2020, 56, 836-846.	0.8	4
8	Modeling of the Optical Properties of Black Silicon Passivated by Thin Films of Metal Oxides. Journal of Contemporary Physics, 2020, 55, 16-22.	0.6	16
9	SYNTHESIS OF MAGNETIC NANOCOMPOSITE FILMS SICxNyFez BY PLASMA-ENHANCED CHEMICAL DECOMPOSITION OF A GASEOUS MIXTURE OF 1,1,1,3,3,3-HEXAMETHYLDISILAZANE, FERROCENE, AND HELIUM. Journal of Structural Chemistry, 2020, 61, 1865-1875.	1.0	2
10	Characteristics of the Phase Transition in Vanadium Dioxide Films Obtained via Chemical Vapor Deposition. Russian Journal of Physical Chemistry A, 2019, 93, 1449-1454.	0.6	1
11	Deposition of Films from a Mixture of Hexamethylcyclotrisilazane Vapor and Argon in Inductively Coupled Plasma. Glass Physics and Chemistry, 2019, 45, 525-531.	0.7	2
12	Synthesis of Highly Transparent SiCxNyOz:H Films via Plasma-Chemical Decomposition of 1,1,3,3,5,5-Hexamethylcyclotrisilazane, Oxygen, and Nitrogen Gas Mixture. Russian Journal of General Chemistry, 2019, 89, 2290-2294.	0.8	0
13	ЕMETHOD OF EVALUATING THE ABSORPTION SPECTRUM OF WHEAT LEAF BY THE SPECTRUM OF DIFFUSE REFLECTION. Sibirskii Vestnik Sel'skokhoziaistvennoi Nauki, 2019, 48, 68-76.	0.4	1
14	Synthesis and Properties of Thin Films Formed by Vapor Deposition from Tetramethylsilane in a Radio-Frequency Inductively Coupled Plasma Discharge. Glass Physics and Chemistry, 2018, 44, 174-182.	0.7	7
15	MOCVD growth and characterization of vanadium dioxide films. Journal of Materials Science, 2017, 52, 4061-4069.	3.7	27
16	Structure and elemental composition of transparent nanocomposite silicon oxycarbonitride films. Journal of Structural Chemistry, 2017, 58, 119-125.	1.0	7
17	Temperature dependences of the optical properties and the phase composition of vanadium dioxide films obtained by chemical vapor deposition. Journal of Structural Chemistry, 2017, 58, 1515-1521.	1.0	1
18	Chemical composition of an inductively coupled hexamethyldisilazane–argon plasma and properties of films grown in this plasma. Inorganic Materials, 2016, 52, 630-636.	0.8	3

VLADIMIR SHAYAPOV

#	Article	IF	CITATIONS
19	Chemical composition and properties of films produced from hexamethyldisilazane by plasma-enhanced chemical vapor deposition. High Energy Chemistry, 2016, 50, 213-218.	0.9	1
20	PECVD Synthesis of Silicon Carbonitride Layers Using Methyltris(diethylamino)silane as the New Single-Source Precursor. ECS Journal of Solid State Science and Technology, 2015, 4, N3153-N3163.	1.8	25
21	Structural defects in SiC x N y H z films obtained by plasma-enhanced chemical deposition from hexamethyldisilazane vapor. Journal of Structural Chemistry, 2015, 56, 1070-1075.	1.0	1
22	Films of hydrogenated silicon oxycarbonitride. Part I. Chemical and phase composition. Glass Physics and Chemistry, 2014, 40, 570-577.	0.7	9
23	Hydrogenated silicon oxycarbonitride films. Part II. Physicochemical and functional properties. Glass Physics and Chemistry, 2014, 40, 643-649.	0.7	4
24	Scanning probe microscopy and nanoindentation studies of silicon carbonitride films obtained by PECVD from hexamethyldisilazane. Letters on Materials, 2014, 4, 114-116.	0.7	1
25	Optical and mechanical properties of films obtained by plasma decomposition of hexamethyldisilazane. Russian Journal of Physical Chemistry A, 2012, 86, 1716-1720.	0.6	4
26	Mechanical properties and density of BCxNy films grown by low-pressure chemical vapor deposition from triethylamine borane. Inorganic Materials, 2011, 47, 262-266.	0.8	8
27	Features of determination of thickness of dielectric films obtained in searching experiments. Journal of Surface Investigation, 2010, 4, 452-457.	0.5	5