David A Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1267049/publications.pdf

Version: 2024-02-01

67 papers

4,792 citations

71102 41 h-index 60 g-index

98 all docs 98 docs citations 98 times ranked 5394 citing authors

#	Article	IF	CITATIONS
1	Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. Journal of Orthopaedic Research, 1997, 15, 181-188.	2.3	323
2	Quantification of Sulfated Glycosaminoglycans in Chondrocyte/Alginate Cultures, by Use of 1,9-Dimethylmethylene Blue. Analytical Biochemistry, 1996, 243, 189-191.	2.4	276
3	The metabolism of human mesenchymal stem cells during proliferation and differentiation. Journal of Cellular Physiology, 2011, 226, 2562-2570.	4.1	255
4	Crosslinking Density Influences Chondrocyte Metabolism in Dynamically Loaded Photocrosslinked Poly(ethylene glycol) Hydrogels. Annals of Biomedical Engineering, 2004, 32, 407-417.	2.5	212
5	Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. Journal of Orthopaedic Research, 2004, 22, 1143-1149.	2.3	169
6	Biophysical Regulation of Chromatin Architecture Instills a Mechanical Memory in Mesenchymal Stem Cells. Scientific Reports, 2015, 5, 16895.	3.3	148
7	Differentiation alters stem cell nuclear architecture, mechanics, and mechano-sensitivity. ELife, 2016, 5, .	6.0	138
8	Mechanical Regulation of Nuclear Structure and Function. Annual Review of Biomedical Engineering, 2012, 14, 431-455.	12.3	136
9	Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels. Journal of Biomechanics, 2000, 33, 81-95.	2.1	118
10	Mechanical compression influences intracellular Ca ²⁺ signaling in chondrocytes seeded in agarose constructs. Journal of Applied Physiology, 2001, 90, 1385-1391.	2.5	114
11	Continuous and Uninterrupted Oxygen Tension Influences the Colony Formation and Oxidative Metabolism of Human Mesenchymal Stem Cells. Tissue Engineering - Part C: Methods, 2013, 19, 68-79.	2.1	109
12	Temporal regulation of chondrocyte metabolism in agarose constructs subjected to dynamic compression. Archives of Biochemistry and Biophysics, 2003, 417, 105-111.	3.0	108
13	Response of chondrocyte subpopulations cultured within unloaded and loaded agarose. Journal of Orthopaedic Research, 1998, 16, 726-733.	2.3	105
14	The Influence of Noncollagenous Matrix Components on the Micromechanical Environment of Tendon Fascicles. Annals of Biomedical Engineering, 2005, 33, 1090-1099.	2.5	105
15	Osmotic Challenge Drives Rapid and Reversible Chromatin Condensation in Chondrocytes. Biophysical Journal, 2013, 104, 759-769.	0.5	105
16	Stem cell mechanobiology. Journal of Cellular Biochemistry, 2011, 112, 1-9.	2.6	103
17	Live cell imaging using confocal microscopy induces intracellular calcium transients and cell death. American Journal of Physiology - Cell Physiology, 2003, 284, C1083-C1089.	4.6	102
18	Expansion of chondrocytes for tissue engineering in alginate beads enhances chondrocytic phenotype compared to conventional monolayer techniques. Acta Orthopaedica, 2003, 74, 6-15.	1.4	99

#	Article	IF	CITATIONS
19	Cyclic tensile strain upregulates collagen synthesis in isolated tendon fascicles. Biochemical and Biophysical Research Communications, 2005, 336, 424-429.	2.1	98
20	Dynamic compressive strain influences chondrogenic gene expression in human mesenchymal stem cells. Biorheology, 2006, 43, 455-70.	0.4	97
21	Compressive Deformation and Damage of Muscle Cell Subpopulations in a Model System. Annals of Biomedical Engineering, 2001, 29, 153-163.	2.5	92
22	Dynamic Mechanical Compression Influences Nitric Oxide Production by Articular Chondrocytes Seeded in Agarose. Biochemical and Biophysical Research Communications, 1998, 251, 580-585.	2.1	88
23	Dynamic Compression Inhibits the Synthesis of Nitric Oxide and PGE2 by IL- $1\hat{l}^2$ -Stimulated Chondrocytes Cultured in Agarose Constructs. Biochemical and Biophysical Research Communications, 2001, 285, 1168-1174.	2.1	88
24	Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility. Journal of Investigative Dermatology, 2016, 136, 74-83.	0.7	84
25	The influence of swelling and matrix degradation on the microstructural integrity of tendon. Acta Biomaterialia, 2006, 2, 505-513.	8.3	79
26	Cellular Utilization Determines Viability and Matrix Distribution Profiles in Chondrocyte-Seeded Alginate Constructs. Tissue Engineering, 2004, 10, 1467-1479.	4.6	74
27	The development and characterization of anin vitro system to study strain-induced cell deformation in isolated chondrocytes. In Vitro Cellular and Developmental Biology - Animal, 1995, 31, 828-835.	1.5	71
28	Confocal analysis of cytoskeletal organisation within isolated chondrocyte sub-populations cultured in agarose. The Histochemical Journal, 2000, 32, 165-174.	0.6	70
29	Rate of oxygen consumption by isolated articular chondrocytes is sensitive to medium glucose concentration. Journal of Cellular Physiology, 2006, 206, 402-410.	4.1	68
30	Influence of External Uniaxial Cyclic Strain on Oriented Fibroblast-Seeded Collagen Gels. Tissue Engineering, 2003, 9, 613-624.	4.6	66
31	Syndecan-4 tunes cell mechanics by activating the kindlin-integrin-RhoA pathway. Nature Materials, 2020, 19, 669-678.	27.5	66
32	Differential regulation of gene expression in isolated tendon fascicles exposed to cyclic tensile strain in vitro. Journal of Applied Physiology, 2009, 106, 506-512.	2.5	60
33	Tamoxifen mechanically reprograms the tumor microenvironment via <scp>HIF</scp> ‶A and reduces cancer cell survival. EMBO Reports, 2019, 20, .	4.5	58
34	Mechanically Induced Chromatin Condensation Requires Cellular Contractility in Mesenchymal Stem Cells. Biophysical Journal, 2016, 111, 864-874.	0.5	56
35	Nutrient Utilization by Bovine Articular Chondrocytes: A Combined Experimental and Theoretical Approach. Journal of Biomechanical Engineering, 2005, 127, 758-766.	1.3	55
36	GPER is a mechanoregulator of pancreatic stellate cells and the tumor microenvironment. EMBO Reports, $2019, 20, .$	4.5	55

#	Article	IF	CITATIONS
37	Mechanical Conditioning Influences the Metabolic Response of Cell-Seeded Constructs. Cells Tissues Organs, 2003, 175, 140-150.	2.3	52
38	Dynamic compression counteracts IL-1beta induced iNOS and COX-2 expression in chondrocyte / agarose constructs. Arthritis Research and Therapy, 2008, 10, R35.	3.5	51
39	Retinoic Acid Receptorâ€Î² Is Downregulated in Hepatocellular Carcinoma and Cirrhosis and Its Expression Inhibits Myosinâ€Driven Activation and Durotaxis in Hepatic Stellate Cells. Hepatology, 2019, 69, 785-802.	7.3	50
40	Glucose Concentration and Medium Volume Influence Cell Viability and Glycosaminoglycan Synthesis in Chondrocyte-Seeded Alginate Constructs. Tissue Engineering, 2006, 12, 3487-3496.	4.6	49
41	Both superficial and deep zone articular chondrocyte subpopulations exhibit the crabtree effect but have different basal oxygen consumption rates. Journal of Cellular Physiology, 2010, 223, 630-639.	4.1	48
42	Tamoxifen mechanically deactivates hepatic stellate cells via the G protein-coupled estrogen receptor. Oncogene, 2019, 38, 2910-2922.	5.9	43
43	Dynamic regulation of nuclear architecture and mechanicsâ€"a rheostatic role for the nucleus in tailoring cellular mechanosensitivity. Nucleus, 2017, 8, 287-300.	2.2	42
44	Stem cell differentiation increases membrane-actin adhesion regulating cell blebability, migration and mechanics. Scientific Reports, 2014, 4, 7307.	3.3	40
45	Gap junction permeability between tenocytes within tendon fascicles is suppressed by tensile loading. Biomechanics and Modeling in Mechanobiology, 2012, 11, 439-447.	2.8	39
46	Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations. Journal of Biomedical Optics, 2012, 17, 016007.	2.6	35
47	Time dependence of cyclic tensile strain on collagen production in tendon fascicles. Biochemical and Biophysical Research Communications, 2007, 362, 399-404.	2.1	34
48	Quantification of chromatin condensation level by image processing. Medical Engineering and Physics, 2014, 36, 412-417.	1.7	32
49	Mechanical Loading of Chondrocytes Embedded in 3D Constructs: In Vitro Methods for Assessment of Morphological and Metabolic Response to Compressive Strain., 2004, 100, 307-324.		30
50	Low oxygen reduces the modulation to an oxidative phenotype in monolayerâ€expanded chondrocytes. Journal of Cellular Physiology, 2010, 222, 248-253.	4.1	30
51	Culture Expansion in Low-Glucose Conditions Preserves Chondrocyte Differentiation and Enhances Their Subsequent Capacity to Form Cartilage Tissue in Three-Dimensional Culture. BioResearch Open Access, 2014, 3, 9-18.	2.6	29
52	Functional analysis of tenocytes gene expression in tendon fascicles subjected to cyclic tensile strain. Connective Tissue Research, 2010, 51, 434-444.	2.3	27
53	Dynamic compression counteracts IL-1beta induced iNOS and COX-2 activity by human chondrocytes cultured in agarose constructs. Biorheology, 2006, 43, 413-29.	0.4	27
54	Cell-generated forces influence the viability, metabolism and mechanical properties of fibroblast-seeded collagen gel constructs. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 43-53.	2.7	17

#	Article	IF	CITATIONS
55	GPER Activation Inhibits Cancer Cell Mechanotransduction and Basement Membrane Invasion via RhoA. Cancers, 2020, 12, 289.	3.7	16
56	Quantification of mRNA Using Real-Time PCR and Western Blot Analysis of MAPK Events in Chondrocyte/Agarose Constructs. Methods in Molecular Biology, 2011, 695, 77-97.	0.9	11
57	Bioreactor Culture Techniques for Cartilage-Tissue Engineering. , 2004, 238, 159-170.		8
58	The development of a bioreactor to perfuse radially-confined hydrogel constructs: Design and characterization of mass transport properties. Biorheology, 2009, 46, 417-437.	0.4	8
59	G Protein-Coupled Estrogen Receptor Regulates Actin Cytoskeleton Dynamics to Impair Cell Polarization. Frontiers in Cell and Developmental Biology, 2020, 8, 592628.	3.7	8
60	Effects of ascorbate on myogenesis in micromass culture. In Vitro Cellular & Developmental Biology, 1990, 26, 259-264.	1.0	7
61	Structure – Properties of Soft Tissues Articular Cartilage. Pergamon Materials Series, 2000, , 75-103.	0.2	6
62	Extracellular oxygen concentration mapping with a confocal multiphoton laser scanning microscope and TCSPC card. Proceedings of SPIE, 2010, , .	0.8	2
63	Effect of Intermittent Cyclic Tensile Strain on Collagen Synthesis by Tenocytes in Isolated Fascicles. Journal of Biomechanical Science and Engineering, 2009, 4, 510-517.	0.3	0
64	1P338 1J1450 Mechano-regulation of gap junction communications between tenocytes within isolated fascicles(Bioengineering,Oral Presentations,The 48th Annual Meeting of the Biophysical Society of) Tj ETQq0 0 C	rg®T/Ove	erlock 10 Tf 50
65	Chondrocyte Deformation and Mechanotransduction in Cartilage Model Systems(International) Tj ETQq1 1 0.78 2005.18, 2-3.	4314 rgBT 0.0	Overlock 10
66	Glucose Concentration and Medium Volume Influences Cell Viability and Glycosaminoglycan Synthesis in Chondrocyte-Seeded Alginate Constructs. Tissue Engineering, 2006, .	4.6	0
67	A compartment model to evaluate the permeability of gap junctions between tenocytes in tendon fascicles. FASEB Journal, 2010, 24, 975.9.	0.5	О