Xijun Xu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1267008/xijun-xu-publications-by-year.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 2,272 26 47 g-index

70 3,145 9.3 5.48 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
62	In-Situ Synthesis of Carbon-Encapsulated Atomic Cobalt as Highly Efficient Polysulfide Electrocatalysts for Highly Stable Lithium-Sulfur Batteries <i>Small</i> , 2022 , e2106640	11	6
61	Pomegranate-like structured NbO/Carbon@N-doped carbon composites as ultrastable anode for advanced sodium/potassium-ion batteries <i>Journal of Colloid and Interface Science</i> , 2022 , 613, 84-93	9.3	2
60	Advances in the Development of Single-Atom Catalysts for High-Energy-Density Lithium-Sulfur Batteries <i>Advanced Materials</i> , 2022 , e2200102	24	13
59	Self-Sacrifice Template Construction of Uniform Yolk-Shell ZnS@C for Superior Alkali-Ion Storage <i>Advanced Science</i> , 2022 , e2200247	13.6	3
58	SnSex (x = 1, 2) Nanoparticles Encapsulated in Carbon Nanospheres with reversible electrochemical behaviors for lithium-ion half/full cells. <i>Chemical Engineering Journal</i> , 2021 , 431, 133463	14.7	1
57	Scalable synthesis of Li2GeO3/expanded graphite as a high-performance anode for Li-ion batteries. <i>Journal of Alloys and Compounds</i> , 2021 , 898, 162893	5.7	1
56	Challenges and Development of Composite Solid Electrolytes for All-solid-state Lithium Batteries. <i>Chemical Research in Chinese Universities</i> , 2021 , 37, 210-231	2.2	4
55	Unraveling the Catalytic Activity of Fe B ased Compounds toward Li2Sx in LiB Chemical System from dB Bands. <i>Advanced Energy Materials</i> , 2021 , 11, 2100673	21.8	29
54	Direct Detection and Visualization of the H Reaction Process in a VO Cathode for Aqueous Zinc-Ion Batteries. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 7076-7084	6.4	1
53	A nanorod-like Ni-rich layered cathode with enhanced Li+ diffusion pathways for high-performance lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 2830-2839	13	26
52	Cathodes for Aqueous Zn-Ion Batteries: Materials, Mechanisms, and Kinetics. <i>Chemistry - A European Journal</i> , 2021 , 27, 830-860	4.8	31
51	Facile Synthesis of YolkBhell Bi@C Nanospheres with Superior Li-ion Storage Performances. <i>Acta Metallurgica Sinica (English Letters)</i> , 2021 , 34, 347-353	2.5	1
50	Challenges and strategies of zinc anode for aqueous zinc-ion batteries. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 2201-2217	7.8	7
49	Freestanding Sodium Vanadate/Carbon Nanotube Composite Cathodes with Excellent Structural Stability and High Rate Capability for Sodium-Ion Batteries. <i>ACS Applied Materials & ACS Applied & ACS APPLIED & ACS ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	8
48	The Electrolyte Additive Effects on Commercialized Ni-Rich LiNixCoyMnzO2 ($x + y + z = 1$) Based Lithium-Ion Pouch Batteries at High Temperature. <i>ACS Applied Energy Materials</i> , 2021 , 4, 2292-2299	6.1	1
47	Ultrafine ZnS Nanoparticles in the Nitrogen-Doped Carbon Matrix for Long-Life and High-Stable Potassium-Ion Batteries. <i>ACS Applied Materials & Discrete Mat</i>	9.5	12
46	Surface/Interface Structure and Chemistry of LithiumBulfur Batteries: From Density Functional Theory Calculations Perspective. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2100007	1.6	9

(2020-2021)

45	LiB Batteries: Unraveling the Catalytic Activity of FeBased Compounds toward Li2Sx in LiB Chemical System from dB Bands (Adv. Energy Mater. 26/2021). <i>Advanced Energy Materials</i> , 2021 , 11, 2170101	21.8	1
44	Multifunctional Metal Phosphides as Superior Host Materials for Advanced Lithium-Sulfur Batteries. <i>Chemistry - A European Journal</i> , 2021 , 27, 13494-13512	4.8	5
43	Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries. Journal of Energy Chemistry, 2021 , 60, 32-60	12	18
42	Ni-Rich Layered Oxide with Preferred Orientation (110) Plane as a Stable Cathode Material for High-Energy Lithium-Ion Batteries. <i>Nanomaterials</i> , 2020 , 10,	5.4	7
41	Scalable One-Pot Synthesis of Hierarchical Bi@C Bulk with Superior Lithium-Ion Storage Performances. <i>ACS Applied Materials & Englishing Communication</i> (2018) 12, 51478-51487	9.5	9
40	SnS2/g-C3N4/graphite nanocomposites as durable lithium-ion battery anode with high pseudocapacitance contribution. <i>Electrochimica Acta</i> , 2020 , 349, 136369	6.7	11
39	Facile plasma treated EMnO2@C hybrids for durable cycling cathodes in aqueous Zn-ion batteries. Journal of Alloys and Compounds, 2020 , 827, 154273	5.7	27
38	Recent Progress of P2-Type Layered Transition-Metal Oxide Cathodes for Sodium-Ion Batteries. <i>Chemistry - A European Journal</i> , 2020 , 26, 7747-7766	4.8	35
37	B,N Codoped Graphitic Nanotubes Loaded with Co Nanoparticles as Superior Sulfur Host for Advanced Li-S Batteries. <i>Small</i> , 2020 , 16, e1906634	11	32
36	Self-sacrificial template-directed ZnSe@C as high performance anode for potassium-ion batteries. <i>Chemical Engineering Journal</i> , 2020 , 387, 124061	14.7	31
35	Recent Progress in Organic-Inorganic Composite Solid Electrolytes for All-Solid-State Lithium Batteries. <i>Chemistry - A European Journal</i> , 2020 , 26, 1720-1736	4.8	54
34	Monodisperse CoSn and NiSn Nanoparticles Supported on Commercial Carbon as Anode for Lithium- and Potassium-Ion Batteries. <i>ACS Applied Materials & Discrete Amplied & Discrete Amplied Materi</i>	9.5	24
33	Recent progress of flexible sulfur cathode based on carbon host for lithium-sulfur batteries. <i>Journal of Materials Science and Technology</i> , 2020 , 55, 56-72	9.1	29
32	Hollow spheres of Mo2C@C as synergistically confining sulfur host for superior Liß battery cathode. <i>Electrochimica Acta</i> , 2020 , 332, 135482	6.7	20
31	MnO Stabilized in Carbon-Veiled Multivariate Manganese Oxides as High-Performance Cathode Material for Aqueous Zn-Ion Batteries. <i>Energy and Environmental Materials</i> , 2020 ,	13	11
30	Fe O @C Nanotubes Grown on Carbon Fabric as a Free-Standing Anode for High-Performance Li-Ion Batteries. <i>Chemistry - A European Journal</i> , 2020 , 26, 14708-14714	4.8	9
29	A flexible composite solid electrolyte with a highly stable interphase for dendrite-free and durable all-solid-state lithium metal batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 18043-18054	13	38
28	A Scalable Approach to Na2FeP2O7@Carbon/Expanded Graphite as a Low-Cost and High-Performance Cathode for Sodium-Ion Batteries. <i>ChemElectroChem</i> , 2020 , 7, 3874-3882	4.3	11

27	Solvent-Free Method Prepared a Sandwich-like Nanofibrous Membrane-Reinforced Polymer Electrolyte for High-Performance All-Solid-State Lithium Batteries. <i>ACS Applied Materials & ACS Applied & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	24
26	Co-Sn Nanocrystalline Solid Solutions as Anode Materials in Lithium-Ion Batteries with High Pseudocapacitive Contribution. <i>ChemSusChem</i> , 2019 , 12, 1451-1458	8.3	25
25	Self-Supported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for High-Energy-Density Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2019 , 31, e1902228	24	149
24	Facile Synthesis of Peapod-Like Cu Ge/Ge@C as a High-Capacity and Long-Life Anode for Li-Ion Batteries. <i>Chemistry - A European Journal</i> , 2019 , 25, 11486-11493	4.8	11
23	Facile synthesis of three-dimensional porous interconnected carbon matrix embedded with Sb nanoparticles as superior anode for Na-ion batteries. <i>Chemical Engineering Journal</i> , 2019 , 374, 502-510	14.7	27
22	Robust spindle-structured FeP@C for high-performance alkali-ion batteries anode. <i>Electrochimica Acta</i> , 2019 , 312, 224-233	6.7	37
21	Compositionally tuned NixSn alloys as anode materials for lithium-ion and sodium-ion batteries with a high pseudocapacitive contribution. <i>Electrochimica Acta</i> , 2019 , 304, 246-254	6.7	35
20	LithiumBulfur Batteries: Self-Supported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for High-Energy-Density LithiumBulfur Batteries (Adv. Mater. 33/2019). <i>Advanced Materials</i> , 2019 , 31, 1970236	24	8
19	Mechanistic Understanding of Metal Phosphide Host for Sulfur Cathode in High-Energy-Density Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2019 , 13, 8986-8996	16.7	129
18	Rational synthesis of ternary FeS@TiO2@C nanotubes as anode for superior Na-ion batteries. <i>Chemical Engineering Journal</i> , 2019 , 359, 765-774	14.7	43
17	Dramatically Enhanced Li-Ion Storage of ZnO@C Anodes through TiO Homogeneous Hybridization. <i>Chemistry - A European Journal</i> , 2019 , 25, 582-589	4.8	9
16	A General Metal-Organic Framework (MOF)-Derived Selenidation Strategy for In Situ Carbon-Encapsulated Metal Selenides as High-Rate Anodes for Na-Ion Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1707573	15.6	239
15	FeP@C Nanotube Arrays Grown on Carbon Fabric as a Low Potential and Freestanding Anode for High-Performance Li-Ion Batteries. <i>Small</i> , 2018 , 14, e1800793	11	73
14	Amorphous FeF3/C nanocomposite cathode derived from metal B rganic frameworks for sodium ion batteries. <i>RSC Advances</i> , 2017 , 7, 24004-24010	3.7	30
13	Ilmenite Nanotubes for High Stability and High Rate Sodium-Ion Battery Anodes. <i>ACS Nano</i> , 2017 , 11, 5120-5129	16.7	84
12	Self-Supported CoP Nanorod Arrays Grafted on Stainless Steel as an Advanced Integrated Anode for Stable and Long-Life Lithium-Ion Batteries. <i>Chemistry - A European Journal</i> , 2017 , 23, 5198-5204	4.8	65
11	Metal-Organic Framework-Derived NiSb Alloy Embedded in Carbon Hollow Spheres as Superior Lithium-Ion Battery Anodes. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 2516-2525	9.5	95
10	Robust Pitaya-Structured Pyrite as High Energy Density Cathode for High-Rate Lithium Batteries. <i>ACS Nano</i> , 2017 , 11, 9033-9040	16.7	200

LIST OF PUBLICATIONS

9	From ZnSn(OH) 6 to SnS 2: Topotactic transformation synthesis of SnS 2 hierarchical microcubes with superior Li-ion storage performance. <i>Materials Research Bulletin</i> , 2017 , 96, 28-34	5.1	8
8	In situ carbon-coating and Ostwald ripening-based route for hollow Ni3S4@C spheres with superior Li-ion storage performances. <i>RSC Advances</i> , 2016 , 6, 101752-101759	3.7	21
7	Reduced graphene oxide anchored tin sulfide hierarchical microspheres with superior Li-ion storage performance. <i>Ionics</i> , 2016 , 22, 1811-1818	2.7	15
6	Uniform Hierarchical Fe3O4@Polypyrrole Nanocages for Superior Lithium Ion Battery Anodes. <i>Advanced Energy Materials</i> , 2016 , 6, 1600256	21.8	152
5	In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries. <i>ACS Applied Materials & District Amplication (Control of Control of Contr</i>	5 <i>7</i> 2 - 84	179
4	Facile synthesis of P2-type Na0.4Mn0.54Co0.46O2 as a high capacity cathode material for sodium-ion batteries. <i>RSC Advances</i> , 2015 , 5, 51454-51460	3.7	44
3	Wheat straw carbon matrix wrapped sulfur composites as a superior cathode for LiB batteries. <i>RSC Advances</i> , 2015 , 5, 100089-100096	3.7	29
2	Controlled synthesis and formation mechanism of monodispersive lanthanum vanadate nanowires with monoclinic structure. <i>Journal of Solid State Chemistry</i> , 2013 , 200, 123-127	3.3	5
1	General construction of lithiophilic 3D skeleton for dendrite-free lithium metal anode via a versatile MOF-derived route. <i>Science China Materials</i> ,1	7.1	5