

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1267008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A General Metalâ€Organic Framework (MOF)â€Derived Selenidation Strategy for In Situ Carbonâ€Encapsulated Metal Selenides as Highâ€Rate Anodes for Naâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1707573.	7.8	325
2	Robust Pitaya-Structured Pyrite as High Energy Density Cathode for High-Rate Lithium Batteries. ACS Nano, 2017, 11, 9033-9040.	7.3	247
3	Self‣upported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for Highâ€Energyâ€Density Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1902228.	11.1	216
4	Mechanistic Understanding of Metal Phosphide Host for Sulfur Cathode in High-Energy-Density Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 8986-8996.	7.3	215
5	In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 20957-20964.	4.0	210
6	Advances in the Development of Singleâ€Atom Catalysts for Highâ€Energyâ€Density Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2200102.	11.1	202
7	Uniform Hierarchical Fe ₃ O ₄ @Polypyrrole Nanocages for Superior Lithium Ion Battery Anodes. Advanced Energy Materials, 2016, 6, 1600256.	10.2	184
8	Metal–Organic Framework-Derived NiSb Alloy Embedded in Carbon Hollow Spheres as Superior Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2017, 9, 2516-2525.	4.0	116
9	llmenite Nanotubes for High Stability and High Rate Sodium-Ion Battery Anodes. ACS Nano, 2017, 11, 5120-5129.	7.3	109
10	Recent Progress in Organic–Inorganic Composite Solid Electrolytes for Allâ€5olidâ€5tate Lithium Batteries. Chemistry - A European Journal, 2020, 26, 1720-1736.	1.7	100
11	FeP@C Nanotube Arrays Grown on Carbon Fabric as a Low Potential and Freestanding Anode for Highâ€Performance Liâ€ion Batteries. Small, 2018, 14, e1800793.	5.2	94
12	Unraveling the Catalytic Activity of Fe–Based Compounds toward Li ₂ S <i>_x</i> in Li–S Chemical System from <i>d</i> – <i>p</i> Bands. Advanced Energy Materials, 2021, 11, 2100673.	10.2	89
13	Cathodes for Aqueous Znâ€lon Batteries: Materials, Mechanisms, and Kinetics. Chemistry - A European Journal, 2021, 27, 830-860.	1.7	84
14	A flexible composite solid electrolyte with a highly stable interphase for dendrite-free and durable all-solid-state lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 18043-18054.	5.2	77
15	Selfâ€5upported CoP Nanorod Arrays Grafted on Stainless Steel as an Advanced Integrated Anode for Stable and Longâ€Life Lithiumâ€lon Batteries. Chemistry - A European Journal, 2017, 23, 5198-5204.	1.7	75
16	Recent Progress of P2â€Type Layered Transitionâ€Metal Oxide Cathodes for Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2020, 26, 7747-7766.	1.7	72
17	Rational synthesis of ternary FeS@TiO2@C nanotubes as anode for superior Na-ion batteries. Chemical Engineering Journal, 2019, 359, 765-774.	6.6	64
18	Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries. Journal of Energy Chemistry, 2021, 60, 32-60.	7.1	64

Χιյυν Χυ

#	Article	IF	CITATIONS
19	Robust spindle-structured FeP@C for high-performance alkali-ion batteries anode. Electrochimica Acta, 2019, 312, 224-233.	2.6	62
20	A nanorod-like Ni-rich layered cathode with enhanced Li ⁺ diffusion pathways for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 2830-2839.	5.2	58
21	Self-sacrificial template-directed ZnSe@C as high performance anode for potassium-ion batteries. Chemical Engineering Journal, 2020, 387, 124061.	6.6	55
22	Recent progress of flexible sulfur cathode based on carbon host for lithium-sulfur batteries. Journal of Materials Science and Technology, 2020, 55, 56-72.	5.6	53
23	Compositionally tuned NixSn alloys as anode materials for lithium-ion and sodium-ion batteries with a high pseudocapacitive contribution. Electrochimica Acta, 2019, 304, 246-254.	2.6	51
24	Facile plasma treated β-MnO2@C hybrids for durable cycling cathodes in aqueous Zn-ion batteries. Journal of Alloys and Compounds, 2020, 827, 154273.	2.8	51
25	B,N Codoped Graphitic Nanotubes Loaded with Co Nanoparticles as Superior Sulfur Host for Advanced Li–S Batteries. Small, 2020, 16, e1906634.	5.2	50
26	Challenges and strategies of zinc anode for aqueous zinc-ion batteries. Materials Chemistry Frontiers, 2021, 5, 2201-2217.	3.2	50
27	Facile synthesis of P2-type Na _{0.4} Mn _{0.54} Co _{0.46} O ₂ as a high capacity cathode material for sodium-ion batteries. RSC Advances, 2015, 5, 51454-51460.	1.7	49
28	Monodisperse CoSn and NiSn Nanoparticles Supported on Commercial Carbon as Anode for Lithium- and Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 4414-4422.	4.0	46
29	Solvent-Free Method Prepared a Sandwich-like Nanofibrous Membrane-Reinforced Polymer Electrolyte for High-Performance All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 21586-21595.	4.0	46
30	Selfâ€Sacrifice Template Construction of Uniform Yolk–Shell ZnS@C for Superior Alkaliâ€lon Storage. Advanced Science, 2022, 9, e2200247.	5.6	46
31	Ultrafine ZnS Nanoparticles in the Nitrogen-Doped Carbon Matrix for Long-Life and High-Stable Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 11007-11017.	4.0	44
32	Amorphous FeF ₃ /C nanocomposite cathode derived from metal–organic frameworks for sodium ion batteries. RSC Advances, 2017, 7, 24004-24010.	1.7	43
33	Facile synthesis of three-dimensional porous interconnected carbon matrix embedded with Sb nanoparticles as superior anode for Na-ion batteries. Chemical Engineering Journal, 2019, 374, 502-510.	6.6	42
34	Co–Sn Nanocrystalline Solid Solutions as Anode Materials in Lithiumâ€Ion Batteries with High Pseudocapacitive Contribution. ChemSusChem, 2019, 12, 1451-1458.	3.6	38
35	General construction of lithiophilic 3D skeleton for dendrite-free lithium metal anode via a versatile MOF-derived route. Science China Materials, 2022, 65, 337-348.	3.5	38
36	MnO Stabilized in Carbonâ€Veiled Multivariate Manganese Oxides as Highâ€Performance Cathode Material for Aqueous Znâ€Ion Batteries. Energy and Environmental Materials, 2021, 4, 603-610.	7.3	36

Χιյυν Χυ

#	Article	IF	CITATIONS
37	Wheat straw carbon matrix wrapped sulfur composites as a superior cathode for Li–S batteries. RSC Advances, 2015, 5, 100089-100096.	1.7	35
38	Hollow spheres of Mo2C@C as synergistically confining sulfur host for superior Li–S battery cathode. Electrochimica Acta, 2020, 332, 135482.	2.6	33
39	Inâ€Situ Synthesis of Carbonâ€Encapsulated Atomic Cobalt as Highly Efficient Polysulfide Electrocatalysts for Highly Stable Lithium–Sulfur Batteries. Small, 2022, 18, e2106640.	5.2	33
40	Pomegranate-like structured Nb2O5/Carbon@N-doped carbon composites as ultrastable anode for advanced sodium/potassium-ion batteries. Journal of Colloid and Interface Science, 2022, 613, 84-93.	5.0	32
41	Scalable One-Pot Synthesis of Hierarchical Bi@C Bulk with Superior Lithium-Ion Storage Performances. ACS Applied Materials & Interfaces, 2020, 12, 51478-51487.	4.0	29
42	SnS2/g-C3N4/graphite nanocomposites as durable lithium-ion battery anode with high pseudocapacitance contribution. Electrochimica Acta, 2020, 349, 136369.	2.6	29
43	Surface/Interface Structure and Chemistry of Lithium–Sulfur Batteries: From Density Functional Theory Calculations' Perspective. Advanced Energy and Sustainability Research, 2021, 2, 2100007.	2.8	27
44	Challenges and Development of Composite Solid Electrolytes for All-solid-state Lithium Batteries. Chemical Research in Chinese Universities, 2021, 37, 210-231.	1.3	26
45	In situ carbon-coating and Ostwald ripening-based route for hollow Ni ₃ S ₄ @C spheres with superior Li-ion storage performances. RSC Advances, 2016, 6, 101752-101759.	1.7	25
46	Freestanding Sodium Vanadate/Carbon Nanotube Composite Cathodes with Excellent Structural Stability and High Rate Capability for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 816-826.	4.0	25
47	Construction of Fe7Se8@Carbon nanotubes with enhanced sodium/potassium storage. Journal of Colloid and Interface Science, 2022, 626, 355-363.	5.0	24
48	A Scalable Approach to Na ₂ FeP ₂ O ₇ @Carbon/Expanded Graphite as a Lowâ€Cost and Highâ€Performance Cathode for Sodiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 3874-3882.	1.7	21
49	Fe ₃ O ₄ @C Nanotubes Grown on Carbon Fabric as a Freeâ€6tanding Anode for Highâ€Performance Liâ€Ion Batteries. Chemistry - A European Journal, 2020, 26, 14708-14714.	1.7	19
50	Ni-Rich Layered Oxide with Preferred Orientation (110) Plane as a Stable Cathode Material for High-Energy Lithium-Ion Batteries. Nanomaterials, 2020, 10, 2495.	1.9	19
51	Direct Detection and Visualization of the H ⁺ Reaction Process in a VO ₂ Cathode for Aqueous Zinc-Ion Batteries. Journal of Physical Chemistry Letters, 2021, 12, 7076-7084.	2.1	19
52	Reduced graphene oxide anchored tin sulfide hierarchical microspheres with superior Li-ion storage performance. Ionics, 2016, 22, 1811-1818.	1.2	15
53	Multifunctional Metal Phosphides as Superior Host Materials for Advanced Lithium ulfur Batteries. Chemistry - A European Journal, 2021, 27, 13494-13512.	1.7	15
54	Phenyl 4-Fluorobenzene Sulfonate as a Versatile Film-Forming Electrolyte Additive for Wide-Temperature-Range NCM811//Graphite Batteries. ACS Applied Energy Materials, 2022, 5, 6324-6334.	2.5	13

Xijun Xu

#	Article	IF	CITATIONS
55	Facile Synthesis of Peapodâ€Like Cu ₃ Ge/Ge@C as a Highâ€Capacity and Longâ€Life Anode for Liâ€ Batteries. Chemistry - A European Journal, 2019, 25, 11486-11493.	on 1.7	12
56	The Electrolyte Additive Effects on Commercialized Ni-Rich LiNi _{<i>x</i>} Co <i>_y</i> Mn <i>z</i> O ₂ (<i>x</i> + <i>y</i> + <i>z</i>) Tj E	ГQq <u>0</u> 0 0 г	rgBT /Overloc
57	2292-2299. SnSex (xÂ=Â1, 2) nanoparticles encapsulated in carbon nanospheres with reversible electrochemical behaviors for lithium-ion half/full cells. Chemical Engineering Journal, 2022, 431, 133463.	6.6	12
58	Dramatically Enhanced Liâ€Ion Storage of ZnO@C Anodes through TiO ₂ Homogeneous Hybridization. Chemistry - A European Journal, 2019, 25, 582-589.	1.7	11
59	Scalable synthesis of Li2GeO3/expanded graphite as a high-performance anode for Li-ion batteries. Journal of Alloys and Compounds, 2022, 898, 162893.	2.8	11
60	From ZnSn(OH) 6 to SnS 2 : Topotactic transformation synthesis of SnS 2 hierarchical microcubes with superior Li-ion storage performance. Materials Research Bulletin, 2017, 96, 28-34.	2.7	10
61	Lithium–Sulfur Batteries: Selfâ€Supported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for Highâ€Energyâ€Density Lithium–Sulfur Batteries (Adv. Mater. 33/2019). Advanced Materials, 2019, 31, 1970236.	11.1	8
62	Facile Synthesis of Yolk–Shell Bi@C Nanospheres with Superior Li-ion Storage Performances. Acta Metallurgica Sinica (English Letters), 2021, 34, 347-353.	1.5	7
63	Controlled synthesis and formation mechanism of monodispersive lanthanum vanadate nanowires with monoclinic structure. Journal of Solid State Chemistry, 2013, 200, 123-127.	1.4	6
64	Na-Ion Batteries: A General Metal-Organic Framework (MOF)-Derived Selenidation Strategy for In Situ Carbon-Encapsulated Metal Selenides as High-Rate Anodes for Na-Ion Batteries (Adv. Funct. Mater.) Tj ETQq0 0 0	r gBT /Ove	erl o ck 10 Tf 5
65	Li–S Batteries: Unraveling the Catalytic Activity of Fe–Based Compounds toward Li ₂ S <i>_x</i> in Li–S Chemical System from <i>d</i> – <i>p</i> Bands (Adv.) Tj ETQc	11b02784	-3⊉4 rgBT /O
66	Li-Ion Batteries: FeP@C Nanotube Arrays Grown on Carbon Fabric as a Low Potential and Freestanding Anode for High-Performance Li-Ion Batteries (Small 30/2018). Small, 2018, 14, 1870138.	5.2	1
67	Frontispiece: Recent Progress of P2â€Type Layered Transitionâ€Metal Oxide Cathodes for Sodiumâ€lon Batteries. Chemistry - A European Journal, 2020, 26, .	1.7	1
68	Frontispiece: Multifunctional Metal Phosphides as Superior Host Materials for Advanced Lithium‣ulfur Batteries. Chemistry - A European Journal, 2021, 27, .	1.7	0
69	Frontispiece: Cathodes for Aqueous Znâ€lon Batteries: Materials, Mechanisms, and Kinetics. Chemistry - A European Journal, 2021, 27, .	1.7	Ο