Marina Mikhaylova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1266898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spike-timing-dependent plasticity rewards synchrony rather than causality. Cerebral Cortex, 2022, 33, 23-34.	2.9	7
2	Regulation of microtubule detyrosination by Ca2+ and conventional calpains. Journal of Cell Science, 2022, 135, .	2.0	1
3	Direct and indirect effects of tubulin post-translational modifications on microtubule stability: Insights and regulations. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119241.	4.1	16
4	Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines. EMBO Journal, 2022, 41, e106523.	7.8	13
5	Autism-associated SHANK3 missense point mutations impact conformational fluctuations and protein turnover at synapses. ELife, 2021, 10, .	6.0	14
6	Multiomics of synaptic junctions reveals altered lipid metabolism and signaling following environmental enrichment. Cell Reports, 2021, 37, 109797.	6.4	11
7	Ligands binding to the prion protein induce its proteolytic release with therapeutic potential in neurodegenerative proteinopathies. Science Advances, 2021, 7, eabj1826.	10.3	18
8	Enzyme replacement therapy with recombinant pro-CTSD (cathepsin D) corrects defective proteolysis and autophagy in neuronal ceroid lipofuscinosis. Autophagy, 2020, 16, 811-825.	9.1	70
9	Cytoskeletal makeup of the synapse: Shaft versus spine. Cytoskeleton, 2020, 77, 55-64.	2.0	33
10	Actomyosin Contractility in the Generation and Plasticity of Axons and Dendritic Spines. Cells, 2020, 9, 2006.	4.1	7
11	Cyclase-associated protein 2 dimerization regulates cofilin in synaptic plasticity and Alzheimer's disease. Brain Communications, 2020, 2, fcaa086.	3.3	29
12	Conserved Tao Kinase Activity Regulates Dendritic Arborization, Cytoskeletal Dynamics, and Sensory Function in <i>Drosophila</i> . Journal of Neuroscience, 2020, 40, 1819-1833.	3.6	19
13	Fâ€∎ctin patches associated with glutamatergic synapses control positioning of dendritic lysosomes. EMBO Journal, 2019, 38, e101183.	7.8	54
14	Radial somatic Fâ€actin organization affects growth cone dynamics during early neuronal development. EMBO Reports, 2019, 20, e47743.	4.5	20
15	Myosin V regulates synaptopodin clustering and localization in dendrites of hippocampal neurons. Journal of Cell Science, 2019, 132, .	2.0	30
16	Caldendrin Directly Couples Postsynaptic Calcium Signals to Actin Remodeling in Dendritic Spines. Neuron, 2018, 97, 1110-1125.e14.	8.1	68
17	In vivo regulation of the A disintegrin and metalloproteinase 10 (ADAM10) by the tetraspanin 15. Cellular and Molecular Life Sciences, 2018, 75, 3251-3267.	5.4	37
18	Geclusterte Plastizitäbei Langzeitpotenzierung: Wie starke Synapsen bestehen bleiben, um Langzeitgedähtnis aufrechtzuerhalten. Neuroforum, 2018, 24, 195-201.	0.3	0

MARINA MIKHAYLOVA

#	Article	IF	CITATIONS
19	Clustered plasticity in Long-Term Potentiation: How strong synapses persist to maintain long-term memory. Neuroforum, 2018, 24, A127-A132.	0.3	1
20	Clinical relevance of cytoskeleton associated proteins for ovarian cancer. Journal of Cancer Research and Clinical Oncology, 2018, 144, 2195-2205.	2.5	35
21	Quantitative Map of Proteome Dynamics during Neuronal Differentiation. Cell Reports, 2017, 18, 1527-1542.	6.4	79
22	Efficient switching of mCherry fluorescence using chemical caging. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7013-7018.	7.1	19
23	Probing cytoskeletal modulation of passive and active intracellular dynamics using nanobody-functionalized quantum dots. Nature Communications, 2017, 8, 14772.	12.8	65
24	Microtubules Modulate F-actin Dynamics during Neuronal Polarization. Scientific Reports, 2017, 7, 9583.	3.3	30
25	Dendritic Actin Cytoskeleton: Structure, Functions, and Regulations. Frontiers in Cellular Neuroscience, 2017, 11, 147.	3.7	133
26	Strong fascin expression promotes metastasis independent of its F-actin bundling activity. Oncotarget, 2017, 8, 110077-110091.	1.8	23
27	A Jacob/Nsmf Gene Knockout Results in Hippocampal Dysplasia and Impaired BDNF Signaling in Dendritogenesis. PLoS Genetics, 2016, 12, e1005907.	3.5	36
28	Talking to the neighbours: The molecular and physiological mechanisms of clustered synaptic plasticity. Neuroscience and Biobehavioral Reviews, 2016, 71, 352-361.	6.1	11
29	Periodic F-actin structures shape the neck of dendritic spines. Scientific Reports, 2016, 6, 37136.	3.3	80
30	A Dendritic Golgi Satellite between ERGIC and Retromer. Cell Reports, 2016, 14, 189-199.	6.4	99
31	A plasmid-based expression system to study protein–protein interactions at the Golgi inÂvivo. Analytical Biochemistry, 2016, 502, 50-52.	2.4	7
32	Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity. Current Biology, 2016, 26, 849-861.	3.9	82
33	Alternative Splicing, Expression and Cellular Localization of Calneuron-1 in the Rat and Human Brain. Journal of Histochemistry and Cytochemistry, 2015, 63, 793-804.	2.5	12
34	Resolving bundled microtubules using anti-tubulin nanobodies. Nature Communications, 2015, 6, 7933.	12.8	174
35	Single Molecule Localization Microscopy to Study Neuronal Microtubule Organization. Neuromethods, 2015, , 389-408.	0.3	0
36	Binding of Y-P30 to Syndecan 2/3 Regulates the Nuclear Localization of CASK. PLoS ONE, 2014, 9, e85924.	2.5	12

MARINA MIKHAYLOVA

#	Article	IF	CITATIONS
37	Molecular Dynamics of the Neuronal EF-Hand Ca2+-Sensor Caldendrin. PLoS ONE, 2014, 9, e103186.	2.5	14
38	Intracellular Calcium Levels Determine Differential Modulation of Allosteric Interactions within G Protein-Coupled Receptor Heteromers. Chemistry and Biology, 2014, 21, 1546-1556.	6.0	51
39	Cellular distribution of the NMDA-receptor activated synapto-nuclear messenger Jacob in the rat brain. Brain Structure and Function, 2014, 219, 843-860.	2.3	23
40	Analysis of Y-P30/Dermcidin expression and properties of the Y-P30 peptide. BMC Research Notes, 2014, 7, 400.	1.4	4
41	Microtubule Minus-End Binding Protein CAMSAP2 Controls Axon Specification and Dendrite Development. Neuron, 2014, 82, 1058-1073.	8.1	193
42	Isolation of CA1 Nuclear Enriched Fractions from Hippocampal Slices to Study Activity-dependent Nuclear Import of Synapto-nuclear Messenger Proteins. Journal of Visualized Experiments, 2014, , e51310.	0.3	6
43	Encoding and Transducing the Synaptic or Extrasynaptic Origin of NMDA Receptor Signals to the Nucleus. Cell, 2013, 152, 1119-1133.	28.9	173
44	TRAK/Milton Motor-Adaptor Proteins Steer Mitochondrial Trafficking to Axons and Dendrites. Neuron, 2013, 77, 485-502.	8.1	336
45	Super-Resolution Microscopy of the Neuronal Calcium-Binding Proteins Calneuron-1 and Caldendrin. Methods in Molecular Biology, 2013, 963, 147-169.	0.9	31
46	AKAP79/150 interacts with the neuronal calciumâ€binding protein caldendrin. Journal of Neurochemistry, 2012, 122, 714-726.	3.9	17
47	NCS-1 associates with adenosine A2A receptors and modulates receptor function. Frontiers in Molecular Neuroscience, 2012, 5, 53.	2.9	46
48	Early neuronal dysfunction by amyloid \hat{l}^2 oligomers depends on activation of NR2B-containing NMDA receptors. Neurobiology of Aging, 2011, 32, 2219-2228.	3.1	223
49	Nuclear Translocation of Jacob in Hippocampal Neurons after Stimuli Inducing Long-Term Potentiation but Not Long-Term Depression. PLoS ONE, 2011, 6, e17276.	2.5	46
50	Between promiscuity and specificity: novel roles of EFâ€hand calcium sensors in neuronal Ca ²⁺ signalling. Journal of Neurochemistry, 2011, 118, 695-713.	3.9	53
51	Post-translational Membrane Insertion of Tail-anchored Transmembrane EF-hand Ca2+ Sensor Calneurons Requires the TRC40/Asna1 Protein Chaperone. Journal of Biological Chemistry, 2011, 286, 36762-36776.	3.4	28
52	Role of neuronal Ca2+-sensor proteins in Golgi–cell-surface membrane traffic. Biochemical Society Transactions, 2010, 38, 177-180.	3.4	6
53	Dynamic cellular translocation of caldendrin is facilitated by the Ca ²⁺ â€myristoyl switch of recoverin. Journal of Neurochemistry, 2010, 113, 1150-1162.	3.9	16
54	Dendritic mRNA Targeting of Jacob and N-Methyl-d-aspartate-induced Nuclear Translocation after Calpain-mediated Proteolysis. Journal of Biological Chemistry, 2009, 284, 25431-25440.	3.4	25

#	Article	IF	CITATIONS
55	Calneurons provide a calcium threshold for <i>trans</i> -Golgi network to plasma membrane trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9093-9098.	7.1	70
56	Structural differences between the SH3-HOOK-GuK domains of SAP90/PSD-95 and SAP97. Protein Expression and Purification, 2009, 68, 201-207.	1.3	1
57	A comparison of the synaptic proteome in human chronic schizophrenia and rat ketamine psychosis suggest that prohibitin is involved in the synaptic pathology of schizophrenia. Molecular Psychiatry, 2008, 13, 878-896.	7.9	51
58	Caldendrin–Jacob: A Protein Liaison That Couples NMDA Receptor Signalling to the Nucleus. PLoS Biology, 2008, 6, e34.	5.6	177
59	Neuronal Ca2+ signaling via caldendrin and calneurons. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1229-1237.	4.1	48
60	Involvement of Protein Synthesis and Degradation in Long-Term Potentiation of Schaffer Collateral CA1 Synapses. Journal of Neuroscience, 2006, 26, 4949-4955.	3.6	153