Manolis J Manos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1266626/publications.pdf

Version: 2024-02-01

94433 82547 5,565 114 37 72 citations h-index g-index papers 131 131 131 5670 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Layered Metal Sulfides Capture Uranium from Seawater. Journal of the American Chemical Society, 2012, 134, 16441-16446.	13.7	434
2	Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications. Progress in Materials Science, 2017, 86, 25-74.	32.8	324
3	Turnâ€On Luminescence Sensing and Realâ€Time Detection of Traces of Water in Organic Solvents by a Flexible Metal–Organic Framework. Angewandte Chemie - International Edition, 2015, 54, 1651-1656.	13.8	277
4	Selective Removal of Cs ⁺ , Sr ²⁺ , and Ni ²⁺ by K _{2<i>x</i>} Mg _{<i>x</i>} Sn _{3â\in"<i>x</i>} S ₆ (<i>x</i> >= 0.5â \in "1) (KMS-2) Relevant to Nuclear Waste Remediation. Chemistry of Materials, 2013, 25, 2116-2127.	6.7	248
5	Metal sulfide ion exchangers: superior sorbents for the capture of toxic and nuclear waste-related metal ions. Chemical Science, 2016, 7, 4804-4824.	7.4	246
6	Layered metal sulfides: Exceptionally selective agents for radioactive strontium removal. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3696-3699.	7.1	230
7	Highly Efficient and Rapid Cs ⁺ Uptake by the Layered Metal Sulfide K _{2<i>x</i>} Mn _{<i>x</i>} Sn _{3\hat{a}<i>x</i>} S ₆ (KMS-1). Journal of the American Chemical Society, 2009, 131, 6599-6607.	13.7	207
8	{Sn[Zn4Sn4S17]}6â^': A Robust Open Framework Based on Metal-Linked Penta-Supertetrahedral [Zn4Sn4S17]10â^' Clusters with Ion-Exchange Properties. Angewandte Chemie - International Edition, 2005, 44, 3552-3555.	13.8	186
9	Selective capture of hexavalent chromium from an anion-exchange column of metal organic resin–alginic acid composite. Chemical Science, 2016, 7, 2427-2436.	7.4	158
10	All in one porous material: exceptional sorption and selective sensing of hexavalent chromium by using a Zr ⁴⁺ MOF. Journal of Materials Chemistry A, 2017, 5, 14707-14719.	10.3	150
11	Unique Pore Selectivity for Cs+and Exceptionally High NH4+Exchange Capacity of the Chalcogenide Material K6Sn[Zn4Sn4S17]. Journal of the American Chemical Society, 2006, 128, 8875-8883.	13.7	143
12	Heavy-Metal-Ion Capture, Ion-Exchange, and Exceptional Acid Stability of the Open-Framework Chalcogenide (NH4)4In12Se20. Chemistry - A European Journal, 2007, 13, 51-58.	3.3	134
13	Sequestration of Heavy Metals from Water with Layered Metal Sulfides. Chemistry - A European Journal, 2009, 15, 4779-4784.	3.3	130
14	Luminescent metal–organic frameworks as chemical sensors: common pitfalls and proposed best practices. Inorganic Chemistry Frontiers, 2018, 5, 1493-1511.	6.0	129
15	H _{2x} Mn _x Sn _{3â€x} S ₆ (x = 0.11–0.25): A Novel Reusa Sorbent for Highly Specific Mercury Capture Under Extreme pH Conditions. Advanced Functional Materials, 2009, 19, 1087-1092.		125
16	A [Mn ₃₂] Doubleâ€Decker Wheel. Angewandte Chemie - International Edition, 2011, 50, 4441-4444.	13.8	109
17	Rapid, green and inexpensive synthesis of high quality UiO-66 amino-functionalized materials with exceptional capability for removal of hexavalent chromium from industrial waste. Inorganic Chemistry Frontiers, 2016, 3, 635-644.	6.0	97
18	Modern progress in metal-organic frameworks and their composites for diverse applications. Microporous and Mesoporous Materials, 2017, 253, 251-265.	4.4	90

#	Article	IF	CITATIONS
19	A Ca ²⁺ MOF combining highly efficient sorption and capability for voltammetric determination of heavy metal ions in aqueous media. Journal of Materials Chemistry A, 2019, 7, 15432-15443.	10.3	72
20	Alkaline Earth Metal Ion/Dihydroxy–Terephthalate MOFs: Structural Diversity and Unusual Luminescent Properties. Inorganic Chemistry, 2015, 54, 5813-5826.	4.0	71
21	Solid state and solution studies of a vanadium(III)-l-cysteine compound and demonstration of its antimetastatic, antioxidant and inhibition of neutral endopeptidase activities. Journal of Inorganic Biochemistry, 2004, 98, 959-968.	3.5	68
22	Structural Motifs and Biological Studies of New Antimony(III) lodide Complexes with Thiones. Inorganic Chemistry, 2010, 49, 488-501.	4.0	60
23	Synthesis, characterization and biological activity of antimony(III) or bismuth(III) chloride complexes with dithiocarbamate ligands derived from thiuram degradation. Polyhedron, 2014, 67, 89-103.	2.2	59
24	Synthesis, structural characterization and biological studies of novel mixed ligand Ag(I) complexes with triphenylphosphine and aspirin or salicylic acid. Inorganica Chimica Acta, 2011, 375, 114-121.	2.4	55
25	Polyoxomolybdenum(V) Sulfite Complexes: Synthesis, Structural, and Physical Studies. Angewandte Chemie - International Edition, 2002, 41, 2801-2805.	13.8	54
26	Exceptional TcO ₄ ^{â^'} sorption capacity and highly efficient ReO ₄ ^{â^'} luminescence sensing by Zr ⁴⁺ MOFs. Journal of Materials Chemistry A, 2018, 6, 20813-20821.	10.3	54
27	A New Class of Ferromagnetically-Coupled Mixed Valence Vanadium(IV/V) Polyoxometalates. Chemistry - A European Journal, 2003, 9, 695-703.	3.3	53
28	Synthesis, structural characterization and in vitro inhibitory studies against human breast cancer of the bis-(2,6-di-tert-butylphenol)tin(iv) dichloride and its complexes. Dalton Transactions, 2012, 41, 14568.	3.3	53
29	Insertion of Functional Groups into a Nd ³⁺ Metal–Organic Framework via Single-Crystal-to-Single-Crystal Coordinating Solvent Exchange. Inorganic Chemistry, 2012, 51, 6308-6314.	4.0	53
30	New Zn ²⁺ Metal Organic Frameworks with Unique Network Topologies from the Combination of Trimesic Acid and Amino-Alcohols. Crystal Growth and Design, 2012, 12, 5471-5480.	3.0	52
31	[Zn(H2O)4][Zn2Sn3Se9(MeNH2)]: a robust open framework chalcogenide with a large nonlinear optical response. Chemical Communications, 2008, , 972-974.	4.1	50
32	Single crystal coordinating solvent exchange as a general method for the enhancement of the photoluminescence properties of lanthanide MOFs. Journal of Materials Chemistry A, 2014, 2, 5258.	10.3	50
33	Synthesis, characterization and biological studies of new antimony(III) halide complexes with I‰-thiocaprolactam. Journal of Inorganic Biochemistry, 2012, 109, 57-65.	3.5	49
34	Use of Hydrazine in the Hydrothermal Synthesis of Chalcogenides: the Neutral Framework Material [Mn2SnS4(N2H4)2]. Inorganic Chemistry, 2009, 48, 4658-4660.	4.0	48
35	Flexible lanthanide MOFs as highly selective and reusable liquid MeOH sorbents. Journal of Materials Chemistry A, 2013, 1, 5061.	10.3	42
36	The search for cobalt single-molecule magnets: A disk-like CoIIICoII6 cluster with a ligand derived from a novel transformation of 2-acetylpyridine. Polyhedron, 2011, 30, 2987-2996.	2.2	38

#	Article	IF	CITATIONS
37	Chemically modified electrodes with MOFs for the determination of inorganic and organic analytes <i>via</i> voltammetric techniques: a critical review. Inorganic Chemistry Frontiers, 2019, 6, 3440-3455.	6.0	38
38	The first polyoxomolybdenum carbonate compound: Synthesis and crystal structure of (NH4)5[(Mo2VO4)3(Âμ6-CO3)(Âμ-CO3)3(Âμ-OH)3]·0.5CH3OH 1. Dalton Transactions RSC, 2001, , 3419-3420.	2.3	34
39	A Highly Porous Interpenetrated Metal–Organic Framework from the Use of a Novel Nanosized Organic Linker. Inorganic Chemistry, 2011, 50, 11297-11299.	4.0	33
40	Polyoxovanadium(IV) Sulfite Compounds: Synthesis, Structural, and Physical Studies. Angewandte Chemie - International Edition, 2003, 42, 425-427.	13.8	32
41	Interaction of antimony(III) chloride with thiourea, 2-mercapto-5-methyl-benzimidazole, 3-methyl-2-mercaptobenzothiazole, 2-mercaptopyrimidine, and 2-mercaptopyridine. Journal of Coordination Chemistry, 2011, 64, 3859-3871.	2.2	30
42	Copper(I)/(II) or silver(I) ions towards 2-mercaptopyrimidine: An exploration of a chemical variability with possible biological implication. Inorganica Chimica Acta, 2012, 382, 146-157.	2.4	30
43	Water-stable 2-D Zr MOFs with exceptional UO ₂ ²⁺ sorption capability. Journal of Materials Chemistry A, 2020, 8, 1849-1857.	10.3	29
44	Synthesis, X-ray structure determination, cytotoxicity and interactions with 9-methylguanine, of ruthenium(II) Î-6-arene complexes. Journal of Organometallic Chemistry, 2014, 768, 1-9.	1.8	28
45	A flexible Cd2+ metal organic framework with a unique (3,3,6)-connected topology, unprecedented secondary building units and single crystal to single crystal solvent exchange properties. CrystEngComm, 2012, 14, 8368.	2.6	27
46	Unexpected reduction of vanadium(IV) to vanadium(III) in the presence of the chelate ligands 2,2′-bipyridine (bpy) and 1,8-hydroxyquinoline (Hquin). Dalton Transactions RSC, 2001, , 1556-1558.	2.3	26
47	Polyoxomolybdenum(V/VI)â^'Sulfite Compounds:Â Synthesis, Structural, and Physical Studies. Inorganic Chemistry, 2007, 46, 6002-6010.	4.0	26
48	Triangular Nill2LnIII and Nill2YIII complexes derived from di-2-pyridyl ketone: Synthesis, structures and magnetic properties. Polyhedron, 2011, 30, 2978-2986.	2.2	25
49	Monomeric Compounds Containing the cis-[V($i£3/4O$)(OH)]+ Core. Angewandte Chemie - International Edition, 2002, 41, 2797-2801.	13.8	24
50	A single-chain magnet based on linear [Mn ^{III} ₂ Mn ^{II}] units. Chemical Communications, 2014, 50, 14873-14876.	4.1	24
51	A Microporous Co ²⁺ Metal Organic Framework with Single-Crystal to Single-Crystal Transformation Properties and High CO ₂ Uptake. Crystal Growth and Design, 2015, 15, 185-193.	3.0	24
52	Interesting copper(<scp>ii</scp>)-assisted transformations of 2-acetylpyridine and 2-benzoylpyridine. Dalton Transactions, 2016, 45, 1063-1077.	3.3	23
53	One-Step Conversion of 2-Amino- <i>N</i> ′-arylbenzamidines into 3-Aryl-4-imino-3,4-dihydroquinazoline-2-carbonitriles Using 4,5-Dichloro-1,2,3-dithiazolium Chloride. Journal of Organic Chemistry, 2013, 78, 9906-9913.	3.2	22
54	Ring transformation of (4-chloro-5H-1,2,3-dithiazol-5-ylidene)acetonitriles to 3-haloisothiazole-5-carbonitriles. RSC Advances, 2014, 4, 7735-7748.	3.6	22

#	Article	IF	CITATIONS
55	Synthesis and non-linear optical properties of some novel nickel derivatives. Chemical Physics, 2010, 372, 33-45.	1.9	21
56	A 1-D coordination polymer based on a Mn40 octagonal super-structure. Chemical Communications, 2013, 49, 1061.	4.1	20
57	Synthesis and Structural Characterization of New Cu(I) Complexes with the Antithyroid Drug 6-ci>n Synthesis and Structural Characterization of New Cu(I) Complexes with the Antithyroid Drug 6-ci>n Synthesis and Structural Characterization of Iodonium Ylides toward Benzo[<i>b</i>)furans with Pharmaceutical Implementations. Inorganic Chemistry, 2012, 51. 12248-12259.	4.0	19
58	Approaches to Molecular Magnetic Materials from the Use of Cyanate Groups in Higher Oxidation State Metal Cluster Chemistry: Mn ₁₄ and Mn ₁₆ . European Journal of Inorganic Chemistry, 2013, 2013, 2286-2290.	2.0	19
59	A microporous Mg ²⁺ MOF with cation exchange properties in a single-crystal-to-single-crystal fashion. Inorganic Chemistry Frontiers, 2017, 4, 530-536.	6.0	19
60	Robust Al ³⁺ MOF with Selective As(V) Sorption and Efficient Luminescence Sensing Properties toward Cr(VI). Inorganic Chemistry, 2022, 61, 2017-2030.	4.0	18
61	α-Benzoin Oxime in Higher Oxidation State 3d Metal Cluster Chemistry: Structural and Magnetic Study of a New Mn ^{III} ₉ Complex. Inorganic Chemistry, 2010, 49, 3077-3079.	4.0	16
62	Study on single crystal structure of the antimony(III) bromide complex with 3-methyl-2-mercaptobenzothiazole and biological activity of some antimony(III) bromide complexes with thioamides. Medicinal Chemistry Research, 2012, 21, 3523-3531.	2.4	16
63	Alkylamino-terephthalate ligands stabilize 8-connected Zr ⁴⁺ MOFs with highly efficient sorption for toxic Se species. Journal of Materials Chemistry A, 2021, 9, 3379-3387.	10.3	16
64	Detection and Sorption of Heavy Metal Ions in Aqueous Media by a Fluorescent Zr(IV) Metal–Organic Framework Functionalized with 2-Picolylamine Receptor Groups. Inorganic Chemistry, 2022, 61, 7847-7858.	4.0	16
65	New Mixedâ€Valence Mn ^{II/III} ₆ Complexes Bearing Oximato and Azido Ligands: Synthesis, and Structural and Magnetic Characterization. European Journal of Inorganic Chemistry, 2010, 2010, 2244-2253.	2.0	15
66	Unravelling the mechanism of water sensing by the Mg $<$ sup $>2+sup> dihydroxy-terephthalate MOF (AEMOF-1\hat{a}\in2). Molecular Systems Design and Engineering, 2020, 5, 461-468.$	3.4	14
67	Oxovanadium(IV)-sulfite compounds: Synthesis and structural and physical studies. Pure and Applied Chemistry, 2005, 77, 1529-1538.	1.9	13
68	A dithiocarbamate-functionalized Zr4+ MOF with exceptional capability for sorption of Pb2+ in aqueous media. Journal of Environmental Chemical Engineering, 2021, 9, 105474.	6.7	13
69	Cotton fabric decorated by a Zr4+ MOF for selective As(V) and Se(IV) removal from aqueous media. Journal of Environmental Chemical Engineering, 2022, 10, 107705.	6.7	13
70	"Squaring the clusters†a MnIII4NiII4 molecular square from nickel(ii)-induced structural transformation of a MnII/III/IV12 cage. Dalton Transactions, 2012, 41, 4744.	3.3	12
71	Pentanuclear complexes with unusual structural topologies from the initial use of two aliphatic amino-alcoholligands in Fe chemistry. Dalton Transactions, 2012, 41, 1544-1552.	3.3	12
72	Assessment of organotins against the linoleic acid, glutathione and CT-DNA. Inorganica Chimica Acta, 2014, 423, 98-106.	2.4	12

#	Article	IF	CITATIONS
73	Synthesis characterization and biological activity of mixed ligand silver(I) complex of 2-benzimidazolylurea and triphenylphosphine. Polyhedron, 2017, 128, 95-103.	2.2	12
74	Supramolecular features in the engineering of 3d metal complexes with phenyl-substituted imidazoles as ligands: the case of copper(<scp>ii</scp>). CrystEngComm, 2015, 17, 7510-7521.	2.6	11
7 5	Highly Efficient Sorption of Methyl Orange by a Metal–Organic Resin–Alginic Acid Composite. ChemPlusChem, 2017, 82, 1188-1196.	2.8	11
76	Polyoxovanadium(IV) Sulfite Compounds: Synthesis, Structural, and Physical Studies. Angewandte Chemie, 2003, 115, 441-443.	2.0	10
77	New type dithiolene complex based on 4,5-(1,4-dioxane-2,3-diyldithio)-1,3-dithiol ligand: Synthesis, experimental and theoretical investigation. Polyhedron, 2009, 28, 3340-3348.	2.2	10
78	A Systematic Evaluation of the Interplay of Weak and Strong Supramolecular Interactions in a Series of Co(II) and Zn(II) Complexes Tuned by Ligand Modification. Crystal Growth and Design, 2012, 12, 429-444.	3.0	10
79	One-pot thermally chemocontrolled double Dielsâ€"Alder strategies. A route to [4 + 2] functionalisation/[4 + 2] derivatization of C60. RSC Advances, 2013, 3, 4750.	3.6	10
80	Heterometallic FeIII–CeIV complexes from the use of aliphatic aminoalcohol ligands. Polyhedron, 2013, 52, 346-354.	2.2	10
81	Discrete and encapsulated molecular grids: homometallic Mn ₁₅ and heterometallic Mn ₂₄ Ni ₂ aggregates. Chemical Communications, 2014, 50, 9090-9093.	4.1	10
82	Boosting photochemical activity by Ni doping of mesoporous CoO nanoparticle assemblies. Inorganic Chemistry Frontiers, 2019, 6, 765-774.	6.0	10
83	Ordering Phenomena in Complex Chalcogenides – the Showcase ofA2In12Q19(A= K, Tl, NH4;Q= Se, Te) and Pseudobinary In2Q3. European Journal of Inorganic Chemistry, 2010, 2010, 367-378.	2.0	9
84	Zinc(II) and Nickel(II) Benzoate Complexes from the Use of 1-methyl-4,5-diphenylimidazole. Bioinorganic Chemistry and Applications, 2010, 2010, 1-7.	4.1	9
85	Synthesis, experimental and theoretical investigation of a new type nickel dithiolene complex. Polyhedron, 2013, 62, 208-217.	2.2	9
86	Towards white-light emission by Tb3+/Eu3+ substitution in a Ca2+ framework. Polyhedron, 2018, 153, 24-30.	2.2	9
87	Fabric phase sorpitive extraction and passive sampling of ultraviolet filters from natural waters using a zirconium metal organic framework-cotton composite. Journal of Chromatography A, 2022, 1670, 462945.	3.7	9
88	Unexpected formation, X-ray structure, and characterization of the triangular [Ti ₃ fY(OMe) ₆ (i- <sup>55H₅5)₃](I_{3<complex [ti(i-^{5</complex>}1₅1₅]. Journal of Coordination}	3) 2.2	8
89	Chemistry, 2011, 64, 2377-2387. Supramolecular patterns of cationic and neutral Ni(ii) complexes from the interplay of hydrogen-bonding, stacking interactions and metal-coordination motifs. CrystEngComm, 2012, 14, 6492.	2.6	8
90	Synthesis, reactivity and characterization of Pt(<scp>ii</scp>) complexes with N,N′ chelating ligands; structure and dimethylsulfoxide reactivity relationship. Dalton Transactions, 2017, 46, 1467-1480.	3.3	8

#	Article	IF	CITATIONS
91	Two new alkaline earth metal organic frameworks with the diamino derivative of biphenyl-4,4 \hat{a} e²-dicarboxylate as bridging ligand: Structures, fluorescence and quenching by gas phase aldehydes. Polyhedron, 2018, 153, 173-180.	2.2	8
92	Hexanuclear complexes from the use of a series of amino-alcohol ligands in Fe chemistry. Polyhedron, 2013, 64, 218-230.	2.2	7
93	A unique microporous copper trimesate selenite with high selectivity for CO2. CrystEngComm, 2014, 16, 3483-3486.	2.6	7
94	Mercouri G. Kanatzidis: Excellence and Innovations in Inorganic and Solid-State Chemistry. Inorganic Chemistry, 2017, 56, 7582-7597.	4.0	7
95	Quantitative preparation of 3,4-di(methylene)tetrahydrothiophene-1,1-dioxide by Zn-induced 1,4-debromination. A valuable 6-C reactive diene in [4+2] cycloadditions with DMAD and [60]fullerene. RSC Advances, 2012, 2, 12269.	3.6	6
96	Stepwise synthesis, characterization, DNA binding properties and cytotoxicity of diruthenium oligopyridine compounds conjugated with peptides. Dalton Transactions, 2018, 47, 3549-3567.	3.3	6
97	A Hybrid {Silk@Zirconium MOF} Material as Highly Efficient AsIII-sponge. Scientific Reports, 2020, 10, 9358.	3.3	6
98	Synthesis of sulfur containing analogues of the soluble guanylate cyclase inhibitor 8-bromo-4H-[1,2,4]oxadiazolo[3,4-c][1,4]benzoxazin-1-one NS2028. Tetrahedron, 2011, 67, 5437-5443.	1.9	5
99	Zirconium(IV) Metal Organic Frameworks with Highly Selective Sorption for Diclofenac under Batch and Continuous Flow Conditions. Crystals, 2022, 12, 424.	2.2	4
100	Synthesis and Structural Characterization of a Metal Cluster and a Coordination Polymer Based on the [Mn6($\hat{l}\frac{1}{4}$ 4-O)2]10+Unit. Bioinorganic Chemistry and Applications, 2010, 2010, 1-7.	4.1	3
101	Synthesis and characterization of platinum(II) oligopyridine-peptide conjugates. Inorganic Chemistry Communication, 2013, 35, 176-180.	3.9	3
102	Tris(2-sulfidopyridine N-oxide-κ2O,S)arsenic(III): An arsenic(III) complex having three 5-membered rings. Main Group Chemistry, 2014, 13, 1-5.	0.8	3
103	Solvent-dependent access to mono- and dinuclear copper(ii) assemblies based on a flexible imidazole ligand. CrystEngComm, 2016, 18, 4733-4743.	2.6	3
104	A new Cd2+-dihydroxyterephthalate MOF: Synthesis, crystal structure and detailed photophysical studies. Polyhedron, 2018, 151, 401-406.	2.2	3
105	Alkaline earth-organic frameworks with amino derivatives of 2,6-naphthalene dicarboxylates: structural studies and fluorescence properties. Dalton Transactions, 2020, 49, 16736-16744.	3.3	3
106	(2E,4E,6E)-3-Methyl-7-(pyren-1-yl)octa-2,4,6-trienoic acid. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2580-o2580.	0.2	2
107	A bifunctional robust metal sulfide with highly selective capture of Pb ²⁺ ions and luminescence sensing ability for heavy metals in aqueous media. Inorganic Chemistry Frontiers, 2021, 8, 4052-4061.	6.0	2
108	Mimicking the oxidized glutathione-VIVO2+ speciesAbbreviations used: bipy, 2,2′-bipyridine; phen, 1,10-phenanthroline; H3mpg, N-(2-mercaptopropionyl)glycine; H2mpgS–S2–, the oxidized-S,S dimer of H3mpg (see Scheme 1) Dalton Transactions, 2003, , 775-777.	3.3	1

#	ARTICLE	IF	CITATIONS
109	Tricyclo[3.3.1.03,7]nonane-3,7-diyl bis(methanesulfonate). Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o409-o409.	0.2	1
110	Polyoxovanadium(IV) Sulfite Compounds: Synthesis, Structural, and Physical Studies ChemInform, 2003, 34, no.	0.0	0
111	{Sn[Zn4Sn4S17]}6-: A Robust Open Framework Based on Metal-Linked Penta-Supertetrahedral [Zn4Sn4S17]10- Clusters with Ion-Exchange Properties ChemInform, 2005, 36, no.	0.0	О
112	Structural characterization of the {3[ΗBPMTU]+ · 3[X]â^' · nH2O} salts (BPMTU =) Tj I interactions. Journal of Coordination Chemistry, 2011, 64, 202-221.	ETQq0 0 0 2.2) rgBT /Overlo O
113	Innentitelbild: A [Mn32] Double-Decker Wheel (Angew. Chem. 19/2011). Angewandte Chemie, 2011, 123, 4326-4326.	2.0	0
114	Inside Cover: A [Mn32] Double-Decker Wheel (Angew. Chem. Int. Ed. 19/2011). Angewandte Chemie - International Edition, 2011, 50, 4238-4238.	13.8	0