Maureen E Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1266246/publications.pdf Version: 2024-02-01

		46918	33814
103	21,754	47	99
papers	citations	h-index	g-index
113	113	113	35576
all docs	docs citations	times ranked	citing authors

MALIDEEN F MILDOHV

#	Article	IF	CITATIONS
1	Targeting ErbB3 and Cellular NADPH/NADP ⁺ Abundance Sensitizes Cutaneous Melanomas to Ferroptosis Inducers. ACS Chemical Biology, 2022, 17, 1038-1044.	1.6	5
2	P53 regulates cellular redox state, ferroptosis and metabolism. Molecular and Cellular Oncology, 2021, 8, 1877076.	0.3	1
3	Shifting the paradigms for tumor suppression: lessons from the p53 field. Oncogene, 2021, 40, 4281-4290.	2.6	15
4	Paradoxical Role for Wild-Type p53 in Driving Therapy Resistance in Melanoma. Molecular Cell, 2020, 77, 633-644.e5.	4.5	45
5	A Novel Inhibitor of HSP70 Induces Mitochondrial Toxicity and Immune Cell Recruitment in Tumors. Cancer Research, 2020, 80, 5270-5281.	0.4	15
6	Functional interplay among thiol-based redox signaling, metabolism, and ferroptosis unveiled by a genetic variant of <i>TP53</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26804-26811.	3.3	31
7	A Rare <i>TP53</i> Mutation Predominant in Ashkenazi Jews Confers Risk of Multiple Cancers. Cancer Research, 2020, 80, 3732-3744.	0.4	32
8	African-centric TP53 variant increases iron accumulation and bacterial pathogenesis but improves response to malaria toxin. Nature Communications, 2020, 11, 473.	5.8	33
9	Increased mTOR activity and metabolic efficiency in mouse and human cells containing the African-centric tumor-predisposing p53 variant Pro47Ser. ELife, 2020, 9, .	2.8	12
10	Editorial: Double-Edged Swords: Genetic Factors That Influence the Pathogenesis of Both Metabolic Disease and Cancer. Frontiers in Endocrinology, 2019, 10, 425.	1.5	1
11	Common genetic variants in the TP53 pathway and their impact on cancer. Journal of Molecular Cell Biology, 2019, 11, 578-585.	1.5	38
12	The Codon 72 <i>TP53</i> Polymorphism Contributes to TSC Tumorigenesis through the Notch–Nodal Axis. Molecular Cancer Research, 2019, 17, 1639-1651.	1.5	2
13	Mechanistic basis for impaired ferroptosis in cells expressing the African-centric S47 variant of p53. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8390-8396.	3.3	72
14	Tumor cells containing the African-Centric S47 variant ofTP53show increased Warburg metabolism. Oncotarget, 2019, 10, 1217-1223.	0.8	11
15	Elevated telomere dysfunction in cells containing the African-centric Pro47Ser cancer-risk variant of TP53. Oncotarget, 2019, 10, 3581-3591.	0.8	4
16	Mutant p53 controls tumor metabolism and metastasis by regulating PGC-1α. Genes and Development, 2018, 32, 230-243.	2.7	81
17	p53 orchestrates DNA replication restart homeostasis by suppressing mutagenic RAD52 and POLÎ, pathways. ELife, 2018, 7, .	2.8	78
18	The transcription-independent mitochondrial cell death pathway is defective in non-transformed cells containing the Pro47Ser variant of p53. Cancer Biology and Therapy, 2018, 19, 1033-1038.	1.5	6

#	Article	IF	CITATIONS
19	The p53 Tumor Suppressor in the Control of Metabolism and Ferroptosis. Frontiers in Endocrinology, 2018, 9, 124.	1.5	138
20	Tailoring Chemotherapy for the African-Centric S47 Variant of TP53. Cancer Research, 2018, 78, 5694-5705.	0.4	9
21	The codon 72 polymorphism of p53 influences cell fate following nutrient deprivation. Cancer Biology and Therapy, 2017, 18, 484-491.	1.5	21
22	Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 2017, 171, 273-285.	13.5	4,081
23	ATG5 Mediates a Positive Feedback Loop between Wnt Signaling and Autophagy in Melanoma. Cancer Research, 2017, 77, 5873-5885.	0.4	26
24	A Unified Approach to Targeting the Lysosome's Degradative and Growth Signaling Roles. Cancer Discovery, 2017, 7, 1266-1283.	7.7	159
25	P53 represses pyrimidine catabolic gene dihydropyrimidine dehydrogenase (DPYD) expression in response to thymidylate synthase (TS) targeting. Scientific Reports, 2017, 7, 9711.	1.6	24
26	Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nature Communications, 2017, 8, 2122.	5.8	196
27	A functionally significant SNP in TP53 and breast cancer risk in African-American women. Npj Breast Cancer, 2017, 3, 5.	2.3	44
28	Inhibition of stress-inducible HSP70 impairs mitochondrial proteostasis and function. Oncotarget, 2017, 8, 45656-45669.	0.8	32
29	Genetic Modifiers of the p53 Pathway. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026302.	2.9	52
30	An African-specific polymorphism in the <i>TP53</i> gene impairs p53 tumor suppressor function in a mouse model. Genes and Development, 2016, 30, 918-930.	2.7	277
31	A link between <i>TP53</i> polymorphisms and metabolism. Molecular and Cellular Oncology, 2016, 3, e1173769.	0.3	11
32	p53 family members regulate cancer stem cells. Cell Cycle, 2016, 15, 1403-1404.	1.3	9
33	The role of the p53 tumor suppressor in metabolism and diabetes. Journal of Endocrinology, 2016, 231, R61-R75.	1.2	108
34	PUMA-dependent apoptosis in NSCLC cancer cells by a dimeric β-carboline. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4884-4887.	1.0	6
35	The African-specific S47 polymorphism of p53 alters chemosensitivity. Cell Cycle, 2016, 15, 2557-2560.	1.3	30
36	Ironing out how p53 regulates ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12350-12352.	3.3	34

#	Article	IF	CITATIONS
37	Subtelomeric p53 binding prevents accumulation of <scp>DNA</scp> damage at human telomeres. EMBO Journal, 2016, 35, 193-207.	3.5	52
38	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
39	HSP70 Inhibition Limits FAK-Dependent Invasion and Enhances the Response to Melanoma Treatment with BRAF Inhibitors. Cancer Research, 2016, 76, 2720-2730.	0.4	33
40	The P72R Polymorphism of p53 Predisposes to Obesity and Metabolic Dysfunction. Cell Reports, 2016, 14, 2413-2425.	2.9	95
41	Design, synthesis, and biological evaluation of \hat{l}^2 -carboline dimers based on the structure of neokauluamine. Tetrahedron Letters, 2015, 56, 3515-3517.	0.7	15
42	Identification of TRIML2, a Novel p53 Target, that Enhances p53 SUMOylation and Regulates the Transactivation of Proapoptotic Genes. Molecular Cancer Research, 2015, 13, 250-262.	1.5	49
43	Efficacy of the HSP70 inhibitor PET-16 in multiple myeloma. Cancer Biology and Therapy, 2015, 16, 1422-1426.	1.5	18
44	<scp>W</scp> nt5 <scp>A</scp> promotes an adaptive, senescentâ€like stress response, while continuing to drive invasion in melanoma cells. Pigment Cell and Melanoma Research, 2015, 28, 184-195.	1.5	77
45	Small-Molecule Reactivation of Mutant p53 to Wild-Type-like p53 through the p53-Hsp40 Regulatory Axis. Chemistry and Biology, 2015, 22, 1206-1216.	6.2	59
46	The Hsp70 Family of Heat Shock Proteins in Tumorigenesis: From Molecular Mechanisms to Therapeutic Opportunities. , 2015, , 203-224.		2
47	Crystal Structure of the Stress-Inducible Human Heat Shock Protein 70 Substrate-Binding Domain in Complex with Peptide Substrate. PLoS ONE, 2014, 9, e103518.	1.1	78
48	Comparison of the activity of three different HSP70 inhibitors on apoptosis, cell cycle arrest, autophagy inhibition, and HSP90 inhibition. Cancer Biology and Therapy, 2014, 15, 194-199.	1.5	48
49	Structural Basis for the Inhibition of HSP70 and DnaK Chaperones by Small-Molecule Targeting of a C-Terminal Allosteric Pocket. ACS Chemical Biology, 2014, 9, 2508-2516.	1.6	62
50	Identification and Characterization of Small Molecule Human Papillomavirus E6 Inhibitors. ACS Chemical Biology, 2014, 9, 1603-1612.	1.6	55
51	The HSP70 family and cancer. Carcinogenesis, 2013, 34, 1181-1188.	1.3	447
52	A Modified HSP70 Inhibitor Shows Broad Activity as an Anticancer Agent. Molecular Cancer Research, 2013, 11, 219-229.	1.5	92
53	Oncogenes and Tumor Suppressor Genes in Autophagy. , 2013, , 127-143.		1
54	Heat Shock Proteins Regulate Activation-induced Proteasomal Degradation of the Mature Phosphorylated Form of Protein Kinase C. Journal of Biological Chemistry, 2013, 288, 27112-27127.	1.6	18

#	Article	IF	CITATIONS
55	A conserved domain in exon 2 coding for the human and murine ARF tumor suppressor protein is required for autophagy induction. Autophagy, 2013, 9, 1553-1565.	4.3	39
56	The p53 Codon 72 Polymorphism Modifies the Cellular Response to Inflammatory Challenge in the Liver. Journal of Liver, 2013, 02, .	0.3	10
57	CSF1 Is a Novel p53 Target Gene Whose Protein Product Functions in a Feed-Forward Manner to Suppress Apoptosis and Enhance p53-Mediated Growth Arrest. PLoS ONE, 2013, 8, e74297.	1.1	20
58	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
59	Abstract 3793: Characterization of the mechanism of action of a novel small molecule inhibitor of HSP70. , 2012, , .		1
60	Interaction of the ARF tumor suppressor with cytosolic HSP70 contributes to its autophagy function. Cancer Biology and Therapy, 2011, 12, 503-509.	1.5	19
61	Wild-type and mutant p53 proteins interact with mitochondrial caspase-3. Cancer Biology and Therapy, 2011, 11, 740-745.	1.5	38
62	Tissue-specific apoptotic effects of the p53 codon 72 polymorphism in a mouse model. Cell Cycle, 2011, 10, 1352-1355.	1.3	36
63	Regulation of female reproduction by p53 and its family members. FASEB Journal, 2011, 25, 2245-2255.	0.2	71
64	HSP70 Inhibition by the Small-Molecule 2-Phenylethynesulfonamide Impairs Protein Clearance Pathways in Tumor Cells. Molecular Cancer Research, 2011, 9, 936-947.	1.5	132
65	The Codon 72 Polymorphism of p53 Regulates Interaction with NF-κB and Transactivation of Genes Involved in Immunity and Inflammation. Molecular and Cellular Biology, 2011, 31, 1201-1213.	1.1	100
66	Autophagy in tumor suppression and cancer therapy. Critical Reviews in Eukaryotic Gene Expression, 2011, 21, 71-100.	0.4	142
67	p53 and ARF: unexpected players in autophagy. Trends in Cell Biology, 2010, 20, 363-369.	3.6	92
68	Wild-type and Hupki (Human p53 Knock-in) Murine Embryonic Fibroblasts. Journal of Biological Chemistry, 2010, 285, 11326-11335.	1.6	31
69	p53, transcriptional repression and drug sensitivity. Cell Cycle, 2010, 9, 4432-4432.	1.3	2
70	p53, ARF, and the Control of Autophagy. , 2010, , 97-105.		0
71	Acetylation of the DNA Binding Domain Regulates Transcription-independent Apoptosis by p53. Journal of Biological Chemistry, 2009, 284, 20197-20205.	1.6	70
72	Single-nucleotide polymorphisms in the p53 pathway regulate fertility in humans. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9761-9766.	3.3	175

#	Article	IF	CITATIONS
73	ARF Induces Autophagy by Virtue of Interaction with Bcl-xl. Journal of Biological Chemistry, 2009, 284, 2803-2810.	1.6	84
74	ARF, autophagy and tumor suppression. Autophagy, 2009, 5, 397-399.	4.3	41
75	A Small Molecule Inhibitor of Inducible Heat Shock Protein 70. Molecular Cell, 2009, 36, 15-27.	4.5	419
76	The ARF Tumor Suppressor Can Promote the Progression of Some Tumors. Cancer Research, 2008, 68, 9608-9613.	0.4	51
77	Low risk HPV-E6 traps p53 in the cytoplasm and induces p53-dependent apoptosis. Cancer Biology and Therapy, 2008, 7, 1916-1918.	1.5	15
78	Oligomerization of BAK by p53 Utilizes Conserved Residues of the p53 DNA Binding Domain. Journal of Biological Chemistry, 2008, 283, 21294-21304.	1.6	78
79	The tetramerization domain of p53 is required for efficient BAK oligomerization. Cancer Biology and Therapy, 2007, 6, 1576-1583.	1.5	30
80	The methionine salvage pathway compound 4-methylthio-2-oxobutanate causes apoptosis independent of down-regulation of ornithine decarboxylase. Biochemical Pharmacology, 2006, 72, 806-815.	2.0	20
81	A novel cancer therapy approach targeting microtubule function. Cancer Biology and Therapy, 2006, 5, 1721-1723.	1.5	3
82	p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nature Cell Biology, 2005, 7, 165-171.	4.6	771
83	The Codon 47 Polymorphism in p53 Is Functionally Significant. Journal of Biological Chemistry, 2005, 280, 24245-24251.	1.6	101
84	Transcriptional Repression by the p53 Tumor Suppressor Protein. , 2005, , 81-94.		0
85	p53 Moves to Mitochondria: A Turn on the Path to Apoptosis. Cell Cycle, 2004, 3, 834-837.	1.3	66
86	p53 Differentially Inhibits Cell Growth Depending on the Mechanism of Telomere Maintenance. Molecular and Cellular Biology, 2004, 24, 5967-5977.	1.1	24
87	Mitochondrial p53 activates Bak and causes disruption of a Bak–Mcl1 complex. Nature Cell Biology, 2004, 6, 443-450.	4.6	698
88	p53 moves to mitochondria: a turn on the path to apoptosis. Cell Cycle, 2004, 3, 836-9.	1.3	31
89	The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nature Genetics, 2003, 33, 357-365.	9.4	1,188
90	The Thousand Doors that Lead to Death: p53-Dependent Repression and Apoptosis. Cancer Biology and Therapy, 2003, 2, 381-382.	1.5	8

#	Article	IF	CITATIONS
91	Microarray Expression Profiling of p53-Dependent Transcriptional Changes in an Immortalized Mouse Embryo Fibroblast Cell Line. Cancer Biology and Therapy, 2003, 2, 416-430.	1.5	15
92	Methods to Study p53-Repressed Promoters. , 2003, 234, 111-120.		1
93	Transcriptional Repression of the Anti-apoptoticsurvivin Gene by Wild Type p53. Journal of Biological Chemistry, 2002, 277, 3247-3257.	1.6	672
94	Biochemical changes associated with a multidrug-resistant phenotype of a human glioma cell line with temozolomide-acquired resistance. Biochemical Pharmacology, 2002, 63, 1219-1228.	2.0	51
95	BID regulation by p53 contributes to chemosensitivity. Nature Cell Biology, 2002, 4, 842-849.	4.6	370
96	Regulation of p53 by Hypoxia: Dissociation of Transcriptional Repression and Apoptosis from p53-Dependent Transactivation. Molecular and Cellular Biology, 2001, 21, 1297-1310.	1.1	326
97	The Corepressor mSin3a Interacts with the Proline-Rich Domain of p53 and Protects p53 from Proteasome-Mediated Degradation. Molecular and Cellular Biology, 2001, 21, 3974-3985.	1.1	117
98	Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes and Development, 2000, 14, 981-993.	2.7	412
99	Down-regulation of the stathmin/Op18 and FKBP25 genes following p53 induction. Oncogene, 1999, 18, 5954-5958.	2.6	123
100	The role of MAP4 expression in the sensitivity to paclitaxel and resistance to vinca alkaloids in p53 mutant cells. Oncogene, 1998, 16, 1617-1624.	2.6	144
101	The neurofibromatosis 2 (NF2) tumor suppressor gene encodes multiple alternatively spliced transcripts. Human Molecular Genetics, 1994, 3, 559-564.	1.4	74
102	Loss of chromosome 8p sequences in human breast carcinoma cell lines. Cancer Genetics and Cytogenetics, 1994, 76, 23-28.	1.0	12
103	Structure and Organization of Amplified DNA on Double Minutes Containing the mdm2 Oncogene. Genomics, 1993, 15, 283-290.	1.3	62