List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1266209/publications.pdf Version: 2024-02-01



LADS P FRITINDH

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A simple method for reconstructing a high-quality NDVI time-series data set based on the<br>Savitzky–Golay filter. Remote Sensing of Environment, 2004, 91, 332-344.           | 4.6 | 1,679     |
| 2  | TIMESAT—a program for analyzing time-series of satellite sensor data. Computers and Geosciences, 2004, 30, 833-845.                                                            | 2.0 | 1,459     |
| 3  | Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40, 1824-1832.                   | 2.7 | 983       |
| 4  | A recent greening of the Sahel—trends, patterns and potential causes. Journal of Arid Environments,<br>2005, 63, 556-566.                                                      | 1.2 | 441       |
| 5  | AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sensing of Environment, 2007, 108, 385-392.                                               | 4.6 | 282       |
| 6  | Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery. Remote<br>Sensing of Environment, 2020, 240, 111685.                                | 4.6 | 226       |
| 7  | Detecting changes in vegetation trends using time series segmentation. Remote Sensing of Environment, 2015, 156, 182-195.                                                      | 4.6 | 219       |
| 8  | Vegetation index trends for the African Sahel 1982-1999. Geophysical Research Letters, 2003, 30, .                                                                             | 1.5 | 208       |
| 9  | Estimation of diurnal air temperature using MSG SEVIRI data in West Africa. Remote Sensing of Environment, 2007, 110, 262-274.                                                 | 4.6 | 200       |
| 10 | Precipitation controls Sahel greening trend. Geophysical Research Letters, 2005, 32, .                                                                                         | 1.5 | 195       |
| 11 | Performance of Smoothing Methods for Reconstructing NDVI Time-Series and Estimating Vegetation Phenology from MODIS Data. Remote Sensing, 2017, 9, 1271.                       | 1.8 | 152       |
| 12 | Impact of understory vegetation on forest canopy reflectance and remotely sensed LAI estimates.<br>Remote Sensing of Environment, 2006, 103, 408-418.                          | 4.6 | 147       |
| 13 | Annual changes in MODIS vegetation indices of Swedish coniferous forests in relation to snow dynamics and tree phenology. Remote Sensing of Environment, 2010, 114, 2719-2730. | 4.6 | 131       |
| 14 | Challenges for drought mitigation in Africa: The potential use of geospatial data and drought information systems. Applied Geography, 2012, 34, 471-486.                       | 1.7 | 127       |
| 15 | Investigating relationships between Landsat ETM+ sensor data and leaf area index in a boreal conifer forest. Remote Sensing of Environment, 2001, 78, 239-251.                 | 4.6 | 118       |
| 16 | Mapping insect defoliation in Scots pine with MODIS time-series data. Remote Sensing of Environment, 2009, 113, 1566-1573.                                                     | 4.6 | 118       |
| 17 | A physically based vegetation index for improved monitoring of plant phenology. Remote Sensing of Environment, 2014, 152, 512-525.                                             | 4.6 | 118       |
| 18 | A comparative analysis of standardised and unstandardised Principal Components Analysis in remote sensing. International Journal of Remote Sensing, 1993, 14, 1359-1370.       | 1.3 | 114       |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Exploring the potential of MODIS EVI for modeling gross primary production across African ecosystems. Remote Sensing of Environment, 2011, 115, 1081-1089.                                         | 4.6 | 113       |
| 20 | Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.                                                                                                                       | 4.2 | 113       |
| 21 | Challenges and Best Practices for Deriving Temperature Data from an Uncalibrated UAV Thermal<br>Infrared Camera. Remote Sensing, 2019, 11, 567.                                                    | 1.8 | 111       |
| 22 | Automated mapping of vegetation trends with polynomials using NDVI imagery over the Sahel. Remote<br>Sensing of Environment, 2014, 141, 79-89.                                                     | 4.6 | 109       |
| 23 | A Method for Robust Estimation of Vegetation Seasonality from Landsat and Sentinel-2 Time Series<br>Data. Remote Sensing, 2018, 10, 635.                                                           | 1.8 | 95        |
| 24 | A groundâ€validated NDVI dataset for monitoring vegetation dynamics and mapping phenology in<br>Fennoscandia and the Kola peninsula. International Journal of Remote Sensing, 2007, 28, 4311-4330. | 1.3 | 87        |
| 25 | Estimating relations between AVHRR NDVI and rainfall in East Africa at 10-day and monthly time scales.<br>International Journal of Remote Sensing, 1998, 19, 563-570.                              | 1.3 | 86        |
| 26 | Net primary production and light use efficiency in a mixed coniferous forest in Sweden. Plant, Cell and Environment, 2005, 28, 412-423.                                                            | 2.8 | 85        |
| 27 | Ground-Based Optical Measurements at European Flux Sites: A Review of Methods, Instruments and Current Controversies. Sensors, 2011, 11, 7954-7981.                                                | 2.1 | 76        |
| 28 | Estimating northern peatland CO2 exchange from MODIS time series data. Remote Sensing of Environment, 2010, 114, 1178-1189.                                                                        | 4.6 | 69        |
| 29 | A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky?Golay filter. Remote Sensing of Environment, 2004, 91, 332-332.                                  | 4.6 | 67        |
| 30 | Ground-Based Optical Measurements at European Flux Sites: A Review of Methods, Instruments and<br>Current Controversies. Sensors, 2011, 11, 7954-7981.                                             | 2.1 | 67        |
| 31 | An Optical Sensor Network for Vegetation Phenology Monitoring and Satellite Data Calibration.<br>Sensors, 2011, 11, 7678-7709.                                                                     | 2.1 | 66        |
| 32 | Estimating LAI in deciduous forest stands. Agricultural and Forest Meteorology, 2005, 129, 27-37.                                                                                                  | 1.9 | 60        |
| 33 | Estimation of absorbed PAR across Scandinavia from satellite measurements. Part II: Modeling and evaluating the fractional absorption. Remote Sensing of Environment, 2007, 110, 240-251.          | 4.6 | 59        |
| 34 | Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe. Remote Sensing of Environment, 2021, 260, 112456.                             | 4.6 | 56        |
| 35 | Climate data induced uncertainty in model-based estimations of terrestrial primary productivity.<br>Environmental Research Letters, 2017, 12, 064013.                                              | 2.2 | 55        |
| 36 | Investigating the use of Landsat thematic mapper data for estimation of forest leaf area index in southern Sweden. Canadian Journal of Remote Sensing, 2003, 29, 349-362.                          | 1.1 | 51        |

LARS R EKLUNDH

| #  | Article                                                                                                                                                                                                                          | lF                  | CITATIONS      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|
| 37 | The supply and demand of net primary production in the Sahel. Environmental Research Letters, 2014, 9, 094003.                                                                                                                   | 2.2                 | 50             |
| 38 | Near real-time monitoring of insect induced defoliation in subalpine birch forests with MODIS derived NDVI. Remote Sensing of Environment, 2016, 181, 42-53.                                                                     | 4.6                 | 49             |
| 39 | Disentangling remotely-sensed plant phenology and snow seasonality at northern Europe using MODIS and the plant phenology index. Remote Sensing of Environment, 2017, 198, 203-212.                                              | 4.6                 | 48             |
| 40 | EUROSPEC: at the interface between remote-sensing and ecosystem<br>CO <sub>2</sub> flux measurements in Europe. Biogeosciences, 2015, 12,<br>6103-6124.                                                                          | 1.3                 | 47             |
| 41 | Mapping fractional forest cover across the highlands of mainland Southeast Asia using MODIS data and regression tree modelling. International Journal of Remote Sensing, 2007, 28, 23-46.                                        | 1.3                 | 46             |
| 42 | Estimating net primary production for Scandinavian forests using data from Terra/MODIS. Advances in Space Research, 2007, 39, 125-130.                                                                                           | 1.2                 | 46             |
| 43 | New satellite-based estimates show significant trends in spring phenology and complex sensitivities to temperature and precipitation at northern European latitudes. International Journal of Biometeorology, 2019, 63, 763-775. | 1.3                 | 45             |
| 44 | Ecological applications of physically based remote sensing methods. Scandinavian Journal of Forest<br>Research, 2010, 25, 325-339.                                                                                               | 0.5                 | 43             |
| 45 | Modeling GPP in the Nordic forest landscape with MODIS time series data—Comparison with the<br>MODIS GPP product. Remote Sensing of Environment, 2012, 126, 136-147.                                                             | 4.6                 | 40             |
| 46 | Spatio-temporal patterns in vegetation start of season across the island of Ireland using the MERIS<br>Global Vegetation Index. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 68, 79-94.                             | 4.9                 | 40             |
| 47 | TIMESAT: A Software Package for Time-Series Processing and Assessment of Vegetation Dynamics.<br>Remote Sensing and Digital Image Processing, 2015, , 141-158.                                                                   | 0.7                 | 39             |
| 48 | Estimation of absorbed PAR across Scandinavia from satellite measurements. Remote Sensing of<br>Environment, 2007, 110, 252-261.                                                                                                 | 4.6                 | 37             |
| 49 | A new invasive insect in Sweden – Physokermes inopinatus: Tracing forest damage with satellite based remote sensing. Forest Ecology and Management, 2012, 285, 29-37.                                                            | 1.4                 | 37             |
| 50 | Assessing Forest Phenology: A Multi-Scale Comparison of Near-Surface (UAV, Spectral Reflectance) Tj ETQq0 (                                                                                                                      | ) 0 rgBT /Ov<br>1.8 | erlock 10 Tf 5 |
| 51 | Regionalization and spatial estimation of ethiopian mean annual rainfall. International Journal of<br>Climatology, 1990, 10, 473-494.                                                                                            | 1.5                 | 35             |
| 52 | Rapid generation of Digital Elevation Models from topographic maps. International Journal of<br>Geographical Information Science, 1995, 9, 329-340.                                                                              | 2.2                 | 35             |
| 53 | Improving the estimation of noise from NOAA AVHRR NDVI for Africa using geostatistics. International Journal of Remote Sensing, 2001, 22, 1067-1080.                                                                             | 1.3                 | 35             |
| 54 | Dynamic response of NDVI to soil moisture variations during different hydrological regimes in the Sahel region. International Journal of Remote Sensing, 2017, 38, 5408-5429.                                                    | 1.3                 | 35             |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Broadâ€scale increase in NPP quantified for the African Sahel, 1982–1999. International Journal of<br>Remote Sensing, 2006, 27, 5115-5122.                                                                                                              | 1.3 | 31        |
| 56 | High-resolution satellite data reveal an increase in peak growing season gross primary production in<br>a high-Arctic wet tundra ecosystem 1992–2008. International Journal of Applied Earth Observation and<br>Geoinformation, 2012, 18, 407-416.      | 1.4 | 31        |
| 57 | Classification of Grassland Successional Stages Using Airborne Hyperspectral Imagery. Remote Sensing, 2014, 6, 7732-7761.                                                                                                                               | 1.8 | 29        |
| 58 | An Empirical Assessment of the MODIS Land Cover Dynamics and TIMESAT Land Surface Phenology<br>Algorithms. Remote Sensing, 2019, 11, 2201.                                                                                                              | 1.8 | 29        |
| 59 | Radiometric Correction of Multispectral UAS Images: Evaluating the Accuracy of the Parrot Sequoia<br>Camera and Sunshine Sensor. Remote Sensing, 2021, 13, 577.                                                                                         | 1.8 | 29        |
| 60 | Modelling of growing season methane fluxes in a high-Arctic wet tundra ecosystem 1997–2010 using<br>in situ and high-resolution satellite data. Tellus, Series B: Chemical and Physical Meteorology, 2013, 65,<br>19722.                                | 0.8 | 24        |
| 61 | TIMESAT for Processing Time-Series Data from Satellite Sensors for Land Surface Monitoring. Remote Sensing and Digital Image Processing, 2016, , 177-194.                                                                                               | 0.7 | 24        |
| 62 | Biodiversity decline with increasing crop productivity in agricultural fields revealed by satellite remote sensing. Ecological Indicators, 2021, 130, 108098.                                                                                           | 2.6 | 24        |
| 63 | Fast estimation of spatially dependent temporal vegetation trends using Gaussian Markov random fields. Computational Statistics and Data Analysis, 2009, 53, 2885-2896.                                                                                 | 0.7 | 19        |
| 64 | Upscaling Northern Peatland CO2 Fluxes Using Satellite Remote Sensing Data. Remote Sensing, 2021, 13, 818.                                                                                                                                              | 1.8 | 19        |
| 65 | Noise estimation in NOAA AVHRR maximum-value composite NDVI images. International Journal of<br>Remote Sensing, 1995, 16, 2955-2962.                                                                                                                    | 1.3 | 18        |
| 66 | Mapping the reduction in gross primary productivity in subarctic birch forests due to insect outbreaks. Biogeosciences, 2017, 14, 1703-1719.                                                                                                            | 1.3 | 18        |
| 67 | First assessment of the plant phenology index (PPI) for estimating gross primary productivity in<br>African semi-arid ecosystems. International Journal of Applied Earth Observation and Geoinformation,<br>2019, 78, 249-260.                          | 1.4 | 18        |
| 68 | Development of a method for monitoring of insect induced forest defoliation – limitation of MODIS<br>data in Fennoscandian forest landscapes. Silva Fennica, 2016, 50, .                                                                                | 0.5 | 18        |
| 69 | Spatial Influence of Topographical Factors on Yield of Potato (Solanum tuberosum L.) in Central<br>Sweden. Precision Agriculture, 2005, 6, 341-357.                                                                                                     | 3.1 | 17        |
| 70 | Ecosystem functional assessment based on the "optical type―concept and self-similarity patterns: An application using MODIS-NDVI time series autocorrelation. International Journal of Applied Earth Observation and Geoinformation, 2015, 43, 132-148. | 1.4 | 17        |
| 71 | Impact of nutrients on peatland GPP estimations using MODIS time series data. Remote Sensing of Environment, 2010, 114, 2137-2145.                                                                                                                      | 4.6 | 16        |
| 72 | The complex multi-sectoral impacts of drought: Evidence from a mountainous basin in the Central Spanish Pyrenees. Science of the Total Environment, 2021, 769, 144702.                                                                                  | 3.9 | 15        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Estimating and Analyzing Savannah Phenology with a Lagged Time Series Model. PLoS ONE, 2016, 11, e0154615.                                                                                                                              | 1.1 | 15        |
| 74 | <roman><italic>In Situ</italic></roman> Calibration of Light Sensors for Long-Term Monitoring of<br>Vegetation. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 3405-3416.                                                | 2.7 | 13        |
| 75 | Applicability of leaf area index products for boreal regions of Sweden. International Journal of Remote Sensing, 2009, 30, 5619-5632.                                                                                                   | 1.3 | 12        |
| 76 | Modelling Daily Gross Primary Productivity with Sentinel-2 Data in the Nordic Region–Comparison with Data from MODIS. Remote Sensing, 2021, 13, 469.                                                                                    | 1.8 | 12        |
| 77 | SEASONALITY EXTRACTION FROM TIME-SERIES OF SATELLITE SENSOR DATA. , 2003, , 487-500.                                                                                                                                                    |     | 11        |
| 78 | Influence of solar zenith angles on observed trends in the NOAA/NASA 8â€km Pathfinder normalized<br>difference vegetation index over the African Sahel. International Journal of Remote Sensing, 2006, 27,<br>1973-1991.                | 1.3 | 10        |
| 79 | Effect of climate dataset selection on simulations of terrestrial GPP: Highest uncertainty for tropical regions. PLoS ONE, 2018, 13, e0199383.                                                                                          | 1.1 | 10        |
| 80 | Investigating modelled and observed Terra/MODIS 500-m reflectance data for viewing and illumination effects. Advances in Space Research, 2007, 39, 119-124.                                                                             | 1.2 | 9         |
| 81 | Airborne hyperspectral data predict Ellenberg indicator values for nutrient and moisture availability<br>in dry grazed grasslands within a local agricultural landscape. Ecological Indicators, 2016, 66, 503-516.                      | 2.6 | 9         |
| 82 | Remotely sensed soil moisture to estimate savannah NDVI. PLoS ONE, 2018, 13, e0200328.                                                                                                                                                  | 1.1 | 9         |
| 83 | Estimating Net Primary Production of Swedish Forest Landscapes by Combining Mechanistic Modeling and Remote Sensing. Ambio, 2009, 38, 316-324.                                                                                          | 2.8 | 8         |
| 84 | Modelling and upscaling ecosystem respiration using thermal cameras and UAVs: Application to a peatland during and after a hot drought. Agricultural and Forest Meteorology, 2021, 300, 108330.                                         | 1.9 | 8         |
| 85 | Comparison of carbon assimilation estimates over tropical forest types in India based on different<br>satellite and climate data products. International Journal of Applied Earth Observation and<br>Geoinformation, 2012, 18, 557-563. | 1.4 | 5         |
| 86 | European Remote Sensing: progress, challenges, and opportunities. International Journal of Remote<br>Sensing, 2017, 38, 1759-1764.                                                                                                      | 1.3 | 5         |
| 87 | Field-scale CH <sub>4</sub> emission at a subarctic mire with heterogeneous permafrost thaw status. Biogeosciences, 2021, 18, 5811-5830.                                                                                                | 1.3 | 5         |
| 88 | <title>Extracting information about vegetation seasons in Africa from Pathfinder AVHRR NDVI<br/>imagery using temporal filtering and least-squares fits to asymmetric Gaussian functions</title> . ,<br>2003, , .                       |     | 4         |
| 89 | Estimating leaf area index in coniferous and deciduous forests in Sweden using Landsat optical sensor data. , 2003, 4879, 379.                                                                                                          |     | 3         |
| 90 | Estimation of Gross Primary Productivity of an Ombrotrophic Bog in Southern Sweden. , 2008, , .                                                                                                                                         |     | 1         |

Estimation of Gross Primary Productivity of an Ombrotrophic Bog in Southern Sweden. , 2008, , . 90

| #  | Article                                                                                                                                                  | IF | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 91 | Comparison of Light Use Efficiency, Plant Phenology Index, and Light Response Function-Based GPP<br>Models in the Northern Forest Landscape. , 2021, , . |    | 0         |