Robert Tylingo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1265829/publications.pdf Version: 2024-02-01

ROBERT TYLINCO

#	Article	IF	CITATIONS
1	Preparation and characterization of genipin cross-linked porous chitosan–collagen–gelatin scaffolds using chitosan–CO2 solution. Carbohydrate Polymers, 2014, 102, 901-911.	5.1	114
2	Effect of transglutaminase and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide on the solubility of fish gelatin–chitosan films. Carbohydrate Polymers, 2006, 65, 404-409.	5.1	65
3	Preparation and characterization of porous scaffolds from chitosan-collagen-gelatin composite. Reactive and Functional Polymers, 2016, 103, 131-140.	2.0	49
4	The role of electrolysis and enzymatic hydrolysis treatment in the enhancement of the electrochemical properties of 3D-printed carbon black/poly(lactic acid) structures. Applied Surface Science, 2022, 574, 151587.	3.1	29
5	Virgin rapeseed oils obtained from different rape varieties by cold pressed method – their characteristics, properties, and differences. European Journal of Lipid Science and Technology, 2012, 114, 357-366.	1.0	24
6	The Production Possibility of the Antimicrobial Filaments by Co-Extrusion of the PLA Pellet with Chitosan Powder for FDM 3D Printing Technology. Polymers, 2019, 11, 1893.	2.0	23
7	Comparison of antimicrobial activity of selected, commercially available wound dressing materials. Journal of Wound Care, 2018, 27, 320-326.	O.5	19
8	Chitosan-protein scaffolds loaded with lysostaphin as potential antistaphylococcal wound dressing materials. Journal of Applied Microbiology, 2014, 117, 634-642.	1.4	17
9	Obtaining and Characterization of the PLA/Chitosan Foams with Antimicrobial Properties Achieved by the Emulsification Combined with the Dissolution of Chitosan by CO2 Saturation. Molecules, 2019, 24, 4532.	1.7	16
10	Rheology of potato starch chemically modified with microwave-assisted reactions. LWT - Food Science and Technology, 2013, 53, 249-254.	2.5	15
11	The effect of high pressure at subzero temperature on proteins solubility, drip loss and texture of fish (cod and salmon) and mammal's (pork and beef) meat. Food Science and Technology International, 2014, 20, 383-395.	1.1	14
12	The Synergistic Microbiological Effects of Industrial Produced Packaging Polyethylene Films Incorporated with Zinc Nanoparticles. Polymers, 2020, 12, 1198.	2.0	13
13	Structure and properties of the exopolysaccharides produced by Pseudomonas mutabilis T6 and P. mutabilis ATCC 31014. Carbohydrate Research, 2012, 348, 84-90.	1.1	11
14	A novel method of creating thermoplastic chitosan blends to produce cell scaffolds by FDM additive manufacturing. Carbohydrate Polymers, 2022, 280, 119028.	5.1	10
15	Antibacterial properties of laser-encapsulated titanium oxide nanotubes decorated with nanosilver and covered with chitosan/Eudragit polymers. , 2022, 138, 212950.		10
16	Investigation of an elutable N-propylphosphonic acid chitosan derivative composition with a chitosan matrix prepared from carbonic acid solution. Carbohydrate Polymers, 2018, 179, 196-206.	5.1	9
17	The Drop-in-Drop Encapsulation in Chitosan and Sodium Alginate as a Method of Prolonging the Quality of Linseed Oil. Polymers, 2018, 10, 1355.	2.0	9
18	Tin Oxide Encapsulated into Pyrolyzed Chitosan as a Negative Electrode for Lithium Ion Batteries. Materials, 2021, 14, 1156.	1.3	7

ROBERT TYLINGO

#	Article	IF	CITATIONS
19	The influence of the UV irradiation on degradation of virgin rapeseed oils. European Journal of Lipid Science and Technology, 2013, 115, 648-658.	1.0	6
20	A novel method for drop in drop edible oils encapsulation with chitosan using a coaxial technique. Reactive and Functional Polymers, 2016, 100, 64-72.	2.0	5
21	BIOPOLYMERS IN DESIGNING MODERN ANTIMICROBIAL MEDICAL MATERIALS. Part I. BIOPOLYMER MEDICAL MATERIALS — COLLAGEN, CHITOSAN. Polimery, 2011, 56, 709-715.	0.4	3
22	REVIEW OF CURRENT RESEARCH ON CHITOSAN AS A RAW MATERIAL IN THREE-DIMENSIONAL PRINTING TECHNOLOGY IN BIOMEDICAL APPLICATIONS. Progress on Chemistry and Application of Chitin and Its Derivatives, 2020, XXV, 37-50.	0.1	3
23	A Novel Method of Endotoxins Removal from Chitosan Hydrogel as a Potential Bioink Component Obtained by CO2 Saturation. International Journal of Molecular Sciences, 2022, 23, 5505.	1.8	3
24	Preparation of a Aqueous Chitosan Solutions by CO ₂ Saturation Process and Its Application in the Formulation of Genipin Crosslinked Hydrogel Membranes. Journal of Chitin and Chitosan Science, 2013, 1, 246-250.	0.3	1