Eugenio F Fornasiero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1265641/publications.pdf

Version: 2024-02-01

34 papers

1,738 citations

³⁹⁴²⁸⁶
19
h-index

414303 32 g-index

38 all docs 38 docs citations

38 times ranked 2759 citing authors

#	Article	IF	Citations
1	Centrosome-dependent microtubule modifications set the conditions for axon formation. Cell Reports, 2022, 39, 110686.	2.9	6
2	A Reliable Approach for Revealing Molecular Targets in Secondary Ion Mass Spectrometry. International Journal of Molecular Sciences, 2022, 23, 4615.	1.8	2
3	Protein lifetimes in aged brains reveal a proteostatic adaptation linking physiological aging to neurodegeneration. Science Advances, 2022, 8, .	4.7	22
4	Global and Site-Specific Effect of Phosphorylation on Protein Turnover. Developmental Cell, 2021, 56, 111-124.e6.	3.1	57
5	In Vivo Protein Measurements Across Multiple Organs in the Zebrafish. Methods in Molecular Biology, 2021, 2218, 291-302.	0.4	O
6	NanoSIMS observations of mouse retinal cells reveal strict metabolic controls on nitrogen turnover. BMC Molecular and Cell Biology, 2021, 22, 5.	1.0	9
7	Monitoring mitochondrial translation in living cells. EMBO Reports, 2021, 22, e51635.	2.0	36
8	Brain Long Noncoding RNAs: Multitask Regulators of Neuronal Differentiation and Function. Molecules, 2021, 26, 3951.	1.7	5
9	Influence of Subcellular Localization and Functional State on Protein Turnover. Cells, 2021, 10, 1747.	1.8	8
10	Principles of brain aging: Status and challenges of modeling human molecular changes in mice. Ageing Research Reviews, 2021, 72, 101465.	5.0	7
11	Protein Phosphorylation in Depolarized Synaptosomes: Dissecting Primary Effects of Calcium from Synaptic Vesicle Cycling. Molecular and Cellular Proteomics, 2021, 20, 100061.	2.5	11
12	A nanobody-based fluorescent reporter reveals human \hat{l}_{\pm} -synuclein in the cell cytosol. Nature Communications, 2020, 11, 2729.	5 . 8	33
13	A comparative analysis of the mobility of 45 proteins in the synaptic bouton. EMBO Journal, 2020, 39, e104596.	3.5	29
14	Pathological changes are associated with shifts in the employment of synonymous codons at the transcriptome level. BMC Genomics, 2019, 20, 566.	1.2	10
15	A mass spectrometry workflow for measuring protein turnover rates in vivo. Nature Protocols, 2019, 14, 3333-3365.	5.5	22
16	The long noncoding RNA <i>neuroLNC</i> regulates presynaptic activity by interacting with the neurodegeneration-associated protein TDP-43. Science Advances, 2019, 5, eaay2670.	4.7	38
17	Synapsin I deletion reduces neuronal damage and ameliorates clinical progression of experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 2018, 68, 197-210.	2.0	3
18	The codon sequences predict protein lifetimes and other parameters of the protein life cycle in the mouse brain. Scientific Reports, 2018, 8, 16913.	1.6	17

#	Article	IF	CITATIONS
19	Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions. Nature Communications, 2018, 9, 4230.	5.8	219
20	Newly produced synaptic vesicle proteins are preferentially used in synaptic transmission. EMBO Journal, 2018, 37, .	3.5	81
21	BCAS1 expression defines a population of early myelinating oligodendrocytes in multiple sclerosis lesions. Science Translational Medicine, 2017, 9, .	5.8	138
22	Superâ€resolution imaging for cell biologists. BioEssays, 2015, 37, 436-451.	1.2	120
23	Cadherins as regulators of neuronal polarity. Cell Adhesion and Migration, 2015, 9, 175-182.	1.1	26
24	Cellular and Molecular Applications ofÂSuper-resolution Microscopy. , 2014, , 133-152.		0
25	Distinct temporal hierarchies in membrane and cytoskeleton dynamics precede the morphological polarization of developing neurons. Journal of Cell Science, 2014, 127, 4409-19.	1.2	25
26	N-cadherin specifies first asymmetry in developing neurons. EMBO Journal, 2012, 31, 1893-1903.	3.5	95
27	N-cadherin: A new player in neuronal polarity. Cell Cycle, 2012, 11, 2223-2224.	1.3	11
28	Synapsins Contribute to the Dynamic Spatial Organization of Synaptic Vesicles in an Activity-Dependent Manner. Journal of Neuroscience, 2012, 32, 12214-12227.	1.7	52
29	The synapsins: Multitask modulators of neuronal development. Seminars in Cell and Developmental Biology, 2011, 22, 378-386.	2.3	37
30	Effects of phosphorylation and neuronal activity on the control of synapse formation by synapsin I. Journal of Cell Science, 2011, 124, 3643-3653.	1.2	32
31	The role of synapsins in neuronal development. Cellular and Molecular Life Sciences, 2010, 67, 1383-1396.	2.4	104
32	QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nature Methods, 2010, 7, 339-340.	9.0	404
33	Identification of a developmentally regulated pathway of membrane retrieval in neuronal growth cones. Journal of Cell Science, 2008, 121, 3757-3769.	1.2	53
34	Role of Calcineurin in Nicotine-Mediated Locomotor Sensitization. Journal of Neuroscience, 2007, 27, 8571-8580.	1.7	22