Vinayak V Dixit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1265592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrating a computable general equilibrium model with the four-step framework. Transportation, 2023, 50, 1213-1260.	4.0	1
2	Impact of Connected Automated Buses in a Mixed Fleet Scenario With Connected Automated Cars. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 11982-11993.	8.0	3
3	Examining the macro-level factors affecting vehicle breakdown duration. International Journal of Transportation Science and Technology, 2022, 11, 118-131.	3.6	7
4	Road safety research in the context of low- and middle-income countries: Macro-scale literature analyses, trends, knowledge gaps and challenges. Safety Science, 2022, 146, 105513.	4.9	38
5	A game theoretical analysis of metro-integrated city logistics systems. Transportation Research Part B: Methodological, 2022, 156, 14-27.	5.9	23
6	Autonomous Intersection Management for Connected and Automated Vehicles: A Lane-Based Method. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 15091-15106.	8.0	7
7	Quantum Fourier transform to estimate drive cycles. Scientific Reports, 2022, 12, 654.	3.3	8
8	Link-level resilience analysis for real-world networks using crowd-sourced data. International Journal of Disaster Risk Reduction, 2022, 73, 102893.	3.9	5
9	Comparing and Contrasting the Impacts of Macro-Level Factors on Crash Duration and Frequency. International Journal of Environmental Research and Public Health, 2022, 19, 5726.	2.6	6
10	A Spatio-Temporal autocorrelation model for designing a carshare system using historical heterogeneous Data: Policy suggestion. Transportation Research Part C: Emerging Technologies, 2022, 141, 103758.	7.6	7
11	An integrated decision model for managing hospital evacuation in response to an extreme flood event: A case study of the Hawkesburyâ€Nepean River, NSW, Australia. Safety Science, 2022, 155, 105867.	4.9	17
12	Detection of anomalous vehicles using physics of traffic. Vehicular Communications, 2021, 27, 100304.	4.0	6
13	Sensitivity analysis on a dynamic coupling model for V2V communication distance control. Procedia Computer Science, 2021, 184, 372-379.	2.0	0
14	Quantifying service-reliability-based day-to-day evolution of travel choices in public transit systems with smart transit card data. Transportmetrica B, 2021, 9, 519-551.	2.3	1
15	A New Flexible Parking Reservation Scheme for the Morning Commute under Limited Parking Supplies. Networks and Spatial Economics, 2021, 21, 513-545.	1.6	17
16	Assessing economic benefits of transport projects using an integrated transport-CGE approach. Research in Transportation Economics, 2021, 90, 101115.	4.1	2
17	A Crash Injury Model Involving Autonomous Vehicle: Investigating of Crash and Disengagement Reports. Sustainability, 2021, 13, 7938.	3.2	14
18	Online incentive-compatible mechanisms for traffic intersection auctions. European Journal of Operational Research, 2021, 293, 229-247.	5.7	18

#	Article	IF	CITATIONS
19	Rapidex: A Novel Tool to Estimate Origin–Destination Trips Using Pervasive Traffic Data. Sustainability, 2021, 13, 11171.	3.2	6
20	Hospital evacuation modelling: A critical literature review on current knowledge and research gaps. International Journal of Disaster Risk Reduction, 2021, 66, 102627.	3.9	47
21	A Descriptive Analysis on the Impact of COVID-19 Lockdowns on Road Traffic Incidents in Sydney, Australia. International Journal of Environmental Research and Public Health, 2021, 18, 11701.	2.6	20
22	Crash and disengagement data of autonomous vehicles on public roads in California. Scientific Data, 2021, 8, 298.	5.3	9
23	A behavioral microeconomic foundation for car-following models. Transportation Research Part C: Emerging Technologies, 2020, 113, 228-244.	7.6	13
24	Frequentist and Bayesian Approaches for Understanding Route Choice of Drivers under Stop-and-Go Traffic. Transportation Research Record, 2020, 2674, 371-382.	1.9	1
25	Analysis of Vehicle Breakdown Frequency: A Case Study of New South Wales, Australia. Sustainability, 2020, 12, 8244.	3.2	6
26	Crash Severity and Rate Evaluation of Conventional Vehicles in Mixed Fleets with Connected and Automated Vehicles. Procedia Computer Science, 2020, 170, 688-695.	2.0	8
27	Comprehensive safety assessment in mixed fleets with connected and automated vehicles: A crash severity and rate evaluation of conventional vehicles. Accident Analysis and Prevention, 2020, 142, 105567.	5.7	69
28	A simple crowdsourced delay-based traffic signal control. PLoS ONE, 2020, 15, e0230598.	2.5	23
29	A simple contagion process describes spreading of traffic jams in urban networks. Nature Communications, 2020, 11, 1616.	12.8	81
30	Embedded System Based Automated Vehicles Action Control. , 2020, , .		1
31	An Integrated Supply-Demand Approach to Solving Optimal Relocations in Station-Based Carsharing Systems. Networks and Spatial Economics, 2019, 19, 611-632.	1.6	20
32	Effect of number of stop-&-gos experienced on the route choice behaviour of car drivers. Transportmetrica A: Transport Science, 2019, 15, 435-454.	2.0	4
33	An integrated approach for optimizing left-turn forbiddance decisions at multiple intersections. Transportmetrica B, 2019, 7, 1481-1504.	2.3	8
34	Autonomous driving and residential location preferences: Evidence from a stated choice survey. Transportation Research Part C: Emerging Technologies, 2019, 108, 255-268.	7.6	41
35	Eliciting perceptions of travel time risk and exploring its impact on value of time. Transport Policy, 2019, 82, 36-45.	6.6	5
36	A Behavioral Microeconomic Foundation for Car-following Models. Transportation Research Procedia, 2019, 38, 565-585.	1.5	0

#	Article	IF	CITATIONS
37	Public opinion about automated vehicles in Australia: Results from a large-scale national survey. Transportation Research, Part A: Policy and Practice, 2019, 129, 1-18.	4.2	47
38	A Branch-and-Price Algorithm for the Bilevel Network Maintenance Scheduling Problem. Transportation Science, 2019, 53, 1455-1478.	4.4	11
39	Characterizing multicity urban traffic conditions using crowdsourced data. PLoS ONE, 2019, 14, e0212845.	2.5	30
40	A safety assessment of mixed fleets with Connected and Autonomous Vehicles using the Surrogate Safety Assessment Module. Accident Analysis and Prevention, 2019, 131, 95-111.	5.7	127
41	Mobile phone conversation distraction: Understanding differences in impact between simulator and naturalistic driving studies. Accident Analysis and Prevention, 2019, 129, 108-118.	5.7	38
42	Risk of automated driving: Implications on safety acceptability and productivity. Accident Analysis and Prevention, 2019, 125, 257-266.	5.7	17
43	Game theoretic model for lane changing: Incorporating conflict risks. Accident Analysis and Prevention, 2019, 125, 158-164.	5.7	55
44	Anomalous Data Detection in Vehicular Networks Using Traffic Flow Theory. , 2019, , .		7
45	Application of Fractal theory for crash rate prediction: Insights from random parameters and latent class tobit models. Accident Analysis and Prevention, 2018, 112, 30-38.	5.7	20
46	Scheduling and routing models for food rescue and delivery operations. Socio-Economic Planning Sciences, 2018, 63, 18-32.	5.0	28
47	Two Methods to Calibrate the Total Travel Demand and Variability for a Regional Traffic Network. Computer-Aided Civil and Infrastructure Engineering, 2018, 33, 282-299.	9.8	9
48	A Strategic User Equilibrium for Independently Distributed Originâ€Destination Demands. Computer-Aided Civil and Infrastructure Engineering, 2018, 33, 316-332.	9.8	9
49	An axiomatic characterization of fairness in transport networks: Application to road pricing and spatial equity. Transport Policy, 2018, 68, 142-157.	6.6	9
50	Estimation of sparse O–D matrix accounting for demand volatility. IET Intelligent Transport Systems, 2018, 12, 1020-1026.	3.0	3
51	Red-Light-Running Crashes' Classification, Comparison, and Risk Analysis Based on General Estimates System (GES) Crash Database. International Journal of Environmental Research and Public Health, 2018, 15, 1290.	2.6	12
52	On the existence of network Macroscopic Safety Diagrams: Theory, simulation and empirical evidence. PLoS ONE, 2018, 13, e0200541.	2.5	13
53	A review of computable general equilibrium models for transport and their applications in appraisal. Transportation Research, Part A: Policy and Practice, 2018, 116, 31-53.	4.2	35
54	Identifying critical disruption scenarios and a global robustness index tailored to real life road networks. Transportation Research, Part E: Logistics and Transportation Review, 2017, 98, 60-81.	7.4	36

#	Article	IF	CITATIONS
55	A preliminary investigation of the relationships between historical crash and naturalistic driving. Accident Analysis and Prevention, 2017, 101, 107-116.	5.7	37
56	Experimental Economics and choice in transportation: Incentives and context. Transportation Research Part C: Emerging Technologies, 2017, 77, 161-184.	7.6	32
57	Constructing a Database for Computable General Equilibrium Modeling of Sydney, Australia, Transport Network. Transportation Research Record, 2017, 2606, 54-62.	1.9	1
58	Long-Range Dependence of Traffic Flow and Speed of a Motorway: Dynamics and Correlation with Historical Incidents. Transportation Research Record, 2017, 2616, 49-57.	1.9	8
59	Predicting casualty-accident count by highway design standards compliance. International Journal of Transportation Science and Technology, 2017, 6, 174-183.	3.6	11
60	An analysis of carsharing vehicle choice and utilization patterns using multiple discrete-continuous extreme value (MDCEV) models. Transportation Research, Part A: Policy and Practice, 2017, 103, 362-376.	4.2	20
61	A General Equilibrium Framework for Integrated Assessment of Transport and Economic Impacts. Networks and Spatial Economics, 2017, 17, 989-1013.	1.6	19
62	Fair allocation and cost-effective routing models for food rescue and redistribution. IISE Transactions, 2017, 49, 1172-1188.	2.4	25
63	Estimating surplus food supply for food rescue and delivery operations. Socio-Economic Planning Sciences, 2017, 57, 73-83.	5.0	43
64	Consistency Between Convergence of Dynamic Assignment and Stochasticity of Microsimulation: Implication for Number of Runs. Transportation Research Record, 2017, 2667, 88-95.	1.9	0
65	Advances in Modelling Connected and Automated Vehicles. Journal of Advanced Transportation, 2017, 2017, 1-3.	1.7	5
66	An experimental study of the Online Information Paradox: Does en-route information improve road network performance?. PLoS ONE, 2017, 12, e0184191.	2.5	26
67	Autonomous Vehicles: Disengagements, Accidents and Reaction Times. PLoS ONE, 2016, 11, e0168054.	2.5	214
68	Impact of risk attitudes and perception on game theoretic driving interactions and safety. Accident Analysis and Prevention, 2016, 94, 135-142.	5.7	19
69	Dynamic Optimal Vehicle Relocation in Carshare Systems. Transportation Research Record, 2016, 2567, 1-9.	1.9	8
70	The development of an Ontology for driving Context Modelling and reasoning. , 2016, , .		10
71	Food Rescue and Delivery. Transportation Research Record, 2016, 2548, 81-89.	1.9	21
72	A Spatial Hazard-Based analysis for modelling vehicle selection in station-based carsharing systems. Transportation Research Part C: Emerging Technologies, 2016, 72, 130-142.	7.6	31

 Evaluation of Fluctuating Speed and Lateral Movement of Vehicles: Comparison Between Mixed Traff and Homogeneous Traffic. Transportation Research Record, 2016, 2581, 104-112. Impact of information on risk attitudes: Implications on valuation of reliability and information. Journal of Choice Modelling, 2016, 20, 16-34. An endogenous lottery-based incentive mechanism to promote off-peak usage in congested transit systems. Transport Policy, 2016, 46, 46-55. Analysis and planning of bicycle parking for public transport stations. International Journal of Sustainable Transportation, 2016, 10, 495-504. Integrating the Bus Vehicle Class Into the Cell Transmission Model. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 2620-2630. Integration of a cell transmission model and macroscopic fundamental diagram: Network aggregation for dynamic traffic models. Transportation Research Part C: Emerging Technologies, 2015, 55, 298-30. A Model to Evaluate the Impact of Headway Variation and Vehicle Size on the Reliability of Public 	IF	CITATIONS
 Impact of information on risk attitudes: Implications on valuation of reliability and information. Journal of Choice Modelling, 2016, 20, 16-34. An endogenous lottery-based incentive mechanism to promote off-peak usage in congested transit systems. Transport Policy, 2016, 46, 46-55. Analysis and planning of bicycle parking for public transport stations. International Journal of Sustainable Transportation, 2016, 10, 495-504. Integrating the Bus Vehicle Class Into the Cell Transmission Model. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 2620-2630. Integration of a cell transmission model and macroscopic fundamental diagram: Network aggregation for dynamic traffic models. Transportation Research Part C: Emerging Technologies, 2015, 55, 298-30. A Model to Evaluate the Impact of Headway Variation and Vehicle Size on the Reliability of Public 	c 1.9	8
 An endogenous lottery-based incentive mechanism to promote off-peak usage in congested transit systems. Transport Policy, 2016, 46, 46-55. Analysis and planning of bicycle parking for public transport stations. International Journal of Sustainable Transportation, 2016, 10, 495-504. Integrating the Bus Vehicle Class Into the Cell Transmission Model. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 2620-2630. Integration of a cell transmission model and macroscopic fundamental diagram: Network aggregation for dynamic traffic models. Transportation Research Part C: Emerging Technologies, 2015, 55, 298-30. A Model to Evaluate the Impact of Headway Variation and Vehicle Size on the Reliability of Public 	2.3	21
 Analysis and planning of bicycle parking for public transport stations. International Journal of Sustainable Transportation, 2016, 10, 495-504. Integrating the Bus Vehicle Class Into the Cell Transmission Model. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 2620-2630. Integration of a cell transmission model and macroscopic fundamental diagram: Network aggregation for dynamic traffic models. Transportation Research Part C: Emerging Technologies, 2015, 55, 298-30 A Model to Evaluate the Impact of Headway Variation and Vehicle Size on the Reliability of Public 	6.6	34
 Integrating the Bus Vehicle Class Into the Cell Transmission Model. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 2620-2630. Integration of a cell transmission model and macroscopic fundamental diagram: Network aggregation for dynamic traffic models. Transportation Research Part C: Emerging Technologies, 2015, 55, 298-30 A Model to Evaluate the Impact of Headway Variation and Vehicle Size on the Reliability of Public 	4.1	26
Integration of a cell transmission model and macroscopic fundamental diagram: Network aggregation for dynamic traffic models. Transportation Research Part C: Emerging Technologies, 2015, 55, 298-30 A Model to Evaluate the Impact of Headway Variation and Vehicle Size on the Reliability of Public	8.0	20
A Model to Evaluate the Impact of Headway Variation and Vehicle Size on the Reliability of Public	9. 7.6	36
⁷⁹ Transit. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 1840-1850.	8.0	7
80 Integrity of estimates of the two-fluid model and gender impacts. Transportation Research Part C: Emerging Technologies, 2015, 50, 141-149.	7.6	4
 Equity-Oriented Aircraft Collision Avoidance Model. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 172-183. 	8.0	19
Measuring risk aversion to guide transportation policy: Contexts, incentives, and respondents. Transportation Research, Part A: Policy and Practice, 2015, 80, 15-34.	4.2	11
 Relationship between mean and day-to-day variation in travel time in urban networks. EURO Journal o Transportation and Logistics, 2015, 3, 227-243. 	n 2,2	9
 Selection and allocation of manual traffic control points and personnel during emergencies. Journal of Emergency Management, 2015, 13, 121-133. 	0.3	3
An algorithmic framework for the scheduling of construction projects based on ant colony optimization and expert knowledge. , 2014, , .		3
A Bulk Queue Model for the Evaluation of Impact of Headway Variations and Passenger Waiting 86 Behavior on Public Transit Performance. IEEE Transactions on Intelligent Transportation Systems, 2014, 15, 2432-2442.	8.0	12
87 Evacuation traffic dynamics. Transportation Research Part C: Emerging Technologies, 2014, 49, 114-3	25. 7.6	35
88 A three-stage framework for motorway travel time prediction. , 2014, , .		1
 Estimating the subjective risks of driving simulator accidents. Accident Analysis and Prevention, 2014 62, 63-78. 	5.7	33
Routing Strategies for Emergency Management Decision Support Systems During Evacuation. Journa of Transportation Safety and Security, 2014, 6, 257-273.	1.6	5

#	Article	IF	CITATIONS
91	Modelling crash propensity of carshare members. Accident Analysis and Prevention, 2014, 70, 140-147.	5.7	2
92	Is equilibrium in transport pure Nash, mixed or Stochastic?. Transportation Research Part C: Emerging Technologies, 2014, 48, 301-310.	7.6	30
93	Evaluation of a Strategic Road Pricing Scheme Accounting for Day-to-Day and Long-Term Demand Uncertainty. Transportation Research Record, 2014, 2467, 12-20.	1.9	7
94	Performance Characteristics of Megaregion Traffic Networks During Mass Evacuations. International Journal of Transportation, 2014, 2, 53-72.	0.4	8
95	Linear Programming Formulation for Strategic Dynamic Traffic Assignment. Networks and Spatial Economics, 2013, 13, 427-443.	1.6	28
96	Behavioural foundations of two-fluid model for urban traffic. Transportation Research Part C: Emerging Technologies, 2013, 35, 115-126.	7.6	22
97	Using Mobile Probe Data and the Macroscopic Fundamental Diagram to Estimate Network Densities. Transportation Research Record, 2013, 2390, 76-86.	1.9	59
98	Special Issue on Interdisciplinary and Multimodal Nature of Evacuations: Nexus of Research and Practice. Natural Hazards Review, 2013, 14, 149-150.	1.5	2
99	Assessing the Effectiveness of Flexible Response in Evacuations. Natural Hazards Review, 2013, 14, 200-210.	1.5	9
100	Comparison of Driver Behavior by Time of Day and Wet Pavement Conditions. Journal of Transportation Engineering, 2012, 138, 1023-1029.	0.9	18
101	Modeling Origin-Destination Effects on Roundabout Operations and Inflow Control. Journal of Transportation Engineering, 2012, 138, 1016-1022.	0.9	10
102	Comparing Three Lane Merging Schemes for Short-Term Work Zones: A Simulation Study. ISRN Civil Engineering, 2012, 2012, 1-18.	0.4	5
103	Traffic modelling and simulation for regional multimodal evacuation analysis. International Journal of Advanced Intelligence Paradigms, 2012, 4, 71.	0.3	2
104	Modeling Risk Attitudes in Evacuation Departure Choices. Transportation Research Record, 2012, 2312, 159-163.	1.9	46
105	Validation Techniques for Region-Level Microscopic Mass Evacuation Traffic Simulations. Transportation Research Record, 2011, 2229, 66-74.	1.9	28
106	Quality of traffic flow on urban arterial streets and its relationship with safety. Accident Analysis and Prevention, 2011, 43, 1610-1616.	5.7	27
107	Transit Referenda and Funding Options. Transportation Research Record, 2010, 2143, 44-47.	1.9	7
108	State-of-the-Art Modeling and Analysis for Evacuation Planning and Operations. Journal of Transportation Safety and Security, 2010, 2, 85-87.	1.6	0

#	Article	IF	CITATIONS
109	Issues, Practices, and Needs for Communicating Evacuation Information to Vulnerable Populations. Transportation Research Record, 2010, 2196, 159-167.	1.9	18
110	Hurricane Evacuation: Origin, Route, and Destination. Journal of Transportation Safety and Security, 2009, 1, 74-84.	1.6	22
111	Assessment of I-4 Contraflow Plans. Transportation Research Record, 2008, 2041, 89-97.	1.9	22
112	Understanding the Impact of a Recent Hurricane on Mobilization Time during a Subsequent Hurricane. Transportation Research Record, 2008, 2041, 49-57.	1.9	32
113	Understanding Transportation Systems Through the Lenses of Experimental Economics: A Review. SSRN Electronic Journal, 0, , .	0.4	4
114	Should I stay or should I go? Congestion pricing and equilibrium selection in a transportation network. Theory and Decision, 0, , 1.	1.0	0