Atsushi Goto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1265549/publications.pdf

Version: 2024-02-01

72 papers 3,968 citations

186265
28
h-index

62 g-index

72 all docs 72 docs citations

times ranked

72

2277 citing authors

#	Article	IF	CITATIONS
1	Kinetics of living radical polymerization. Progress in Polymer Science, 2004, 29, 329-385.	24.7	865
2	Structure and Properties of High-Density Polymer Brushes Prepared by Surface-Initiated Living Radical Polymerization. Advances in Polymer Science, 2006, , 1-45.	0.8	551
3	Photocontrolled Organocatalyzed Living Radical Polymerization Feasible over a Wide Range of Wavelengths. Journal of the American Chemical Society, 2015, 137, 5610-5617.	13.7	220
4	Protein Repellency of Well-Defined, Concentrated Poly(2-hydroxyethyl methacrylate) Brushes by the Size-Exclusion Effect. Macromolecules, 2006, 39, 2284-2290.	4.8	201
5	Visible-Light-Induced Reversible Complexation Mediated Living Radical Polymerization of Methacrylates with Organic Catalysts. Macromolecules, 2013, 46, 96-102.	4.8	159
6	Reversible Generation of a Carbon-Centered Radical from Alkyl Iodide Using Organic Salts and Their Application as Organic Catalysts in Living Radical Polymerization. Journal of the American Chemical Society, 2013, 135, 11131-11139.	13.7	154
7	Mechanism and Kinetics of Iodide-Mediated Polymerization of Styrene. Macromolecules, 1998, 31, 2809-2814.	4.8	138
8	Living Radical Polymerizations with Germanium, Tin, and Phosphorus Catalysts â^ Reversible Chain Transfer Catalyzed Polymerizations (RTCPs). Journal of the American Chemical Society, 2007, 129, 13347-13354.	13.7	127
9	Reversible Complexation Mediated Living Radical Polymerization (RCMP) Using Organic Catalysts. Macromolecules, 2011, 44, 8709-8715.	4.8	125
10	Determination of the activation rate constants of alkyl halide initiators for atom transfer radical polymerization. Macromolecular Rapid Communications, 1999, 20, 633-636.	3.9	116
11	Reversible chain transfer catalyzed polymerization (RTCP): A new class of living radical polymerization. Polymer, 2008, 49, 5177-5185.	3.8	96
12	Solvent-Selective Reactions of Alkyl Iodide with Sodium Azide for Radical Generation and Azide Substitution and Their Application to One-Pot Synthesis of Chain-End-Functionalized Polymers. Journal of the American Chemical Society, 2017, 139, 10551-10560.	13.7	69
13	Living Radical Polymerization with Nitrogen Catalyst: Reversible Chain Transfer Catalyzed Polymerization with <i>N</i> -lodosuccinimide. Macromolecules, 2008, 41, 6261-6264.	4.8	66
14	Polymer Dispersity Control by Organocatalyzed Living Radical Polymerization. Angewandte Chemie - International Edition, 2019, 58, 5598-5603.	13.8	63
15	Systematic Study on Alkyl Iodide Initiators in Living Radical Polymerization with Organic Catalysts. Macromolecules, 2014, 47, 6610-6618.	4.8	55
16	Organocatalyzed Living Radical Polymerization via in Situ Halogen Exchange of Alkyl Bromides to Alkyl Iodides. Macromolecules, 2017, 50, 1882-1891.	4.8	52
17	Recent development in halogen-bonding-catalyzed living radical polymerization. Polymer Chemistry, 2020, 11, 5559-5571.	3.9	51
18	Phenols and Carbon Compounds as Efficient Organic Catalysts for Reversible Chain Transfer Catalyzed Living Radical Polymerization (RTCP). Macromolecules, 2010, 43, 7971-7978.	4.8	49

#	Article	IF	CITATIONS
19	Biocompatible Choline Iodide Catalysts for Green Living Radical Polymerization of Functional Polymers. ACS Macro Letters, 2018, 7, 263-268.	4.8	47
20	Reversible Chain Transfer Catalyzed Polymerization (RTCP) of Methyl Methacrylate with Nitrogen Catalyst in an Aqueous Microsuspension System. Macromolecules, 2010, 43, 8703-8705.	4.8	46
21	Facile Fabrication of Concentrated Polymer Brushes with Complex Patterning by Photocontrolled Organocatalyzed Living Radical Polymerization. Angewandte Chemie - International Edition, 2018, 57, 13504-13508.	13.8	41
22	Living Radical Polymerization with Alkali and Alkaline Earth Metal Iodides as Catalysts. Macromolecules, 2016, 49, 5033-5042.	4.8	40
23	Synthesis of transition-metal-free and sulfur-free nanoparticles and nanocapsules <i>via</i> reversible complexation mediated polymerization (RCMP) and polymerization induced self-assembly (PISA). Polymer Chemistry, 2018, 9, 4900-4907.	3.9	38
24	Pyridine <i>N</i> -Oxide Catalyzed Living Radical Polymerization of Methacrylates via Halogen Bonding Catalysis. Macromolecules, 2019, 52, 2156-2163.	4.8	37
25	Comprehensive Study on Chain-End Transformation of Polymer–lodides with Amines for Synthesizing Various Chain-End Functionalized Polymers. Macromolecules, 2016, 49, 9425-9440.	4.8	35
26	Multistimuli Responsive Reversible Cross-Linking–Decross-Linking of Concentrated Polymer Brushes. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 28711-28719.	8.0	32
27	Living Radical Polymerization via Organic Superbase Catalysis. Polymers, 2014, 6, 860-872.	4.5	31
28	Kinetic Simulations of Reversible Chain Transfer Catalyzed Polymerization (RTCP): Guidelines to Optimum Molecular Weight Control. Macromolecular Theory and Simulations, 2010, 19, 24-35.	1.4	28
29	Self-Catalyzed Living Radical Polymerization Using Quaternary-Ammonium-lodide-Containing Monomers. Macromolecules, 2019, 52, 2712-2718.	4.8	28
30	Macromolecular Architectures Designed by Living Radical Polymerization with Organic Catalysts. Polymers, 2014, 6, 311-326.	4.5	26
31	Theoretical and Experimental Studies on Elementary Reactions in Living Radical Polymerization via Organic Amine Catalysis. Macromolecules, 2016, 49, 2511-2517.	4.8	26
32	Temperatureâ€Selective Dual Radical Generation from Alkyl Diiodide: Applications to Synthesis of Asymmetric CABC Multiâ€Block Copolymers and Their Unique Assembly Structures. Angewandte Chemie - International Edition, 2018, 57, 1552-1556.	13.8	24
33	Effective Synthesis of Patterned Polymer Brushes with Tailored Multiple Graft Densities. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14478-14484.	8.0	24
34	Recyclable Solid-Supported Catalysts for Quaternary Ammonium Iodide-Catalyzed Living Radical Polymerization. Macromolecules, 2020, 53, 51-58.	4.8	22
35	Polymer Dispersity Control by Organocatalyzed Living Radical Polymerization. Angewandte Chemie, 2019, 131, 5654-5659.	2.0	20
36	lodine transfer dispersion polymerization (dispersion ITP) with CHI3 and reversible chain transfer catalyzed dispersion polymerization (dispersion RTCP) with GeI4 of styrene in supercritical carbon dioxide. Polymer, 2012, 53, 1212-1218.	3.8	19

#	Article	IF	Citations
37	One Reagent with Two Functions: Simultaneous Living Radical Polymerization and Chain-End Substitution for Tailoring Polymer Dispersity. ACS Macro Letters, 2021, 10, 584-590.	4.8	18
38	Carboxylate, nitrate, sulfonate, and phosphate catalysts for living radical polymerization ⟨i⟩via⟨ i⟩ oxygen–iodine halogen bonding catalysis. Polymer Chemistry, 2020, 11, 53-60.	3.9	17
39	Photo-selective chain end transformation of polyacrylate-iodide using cysteamine and its application to facile single-step preparation of patterned polymer brushes. Chemical Communications, 2018, 54, 13738-13741.	4.1	16
40	Synthesis of nano-capsules <i>via</i> aqueous emulsion RCMP-PISA and encapsulation. Polymer Chemistry, 2020, 11, 3904-3912.	3.9	15
41	Novel in-plane switching liquid crystal display with an extremely high transmittance using a well-designed bottlebrush as a zero-azimuth anchoring material. Japanese Journal of Applied Physics, 2019, 58, 066503.	1.5	14
42	Synthesis of degradable and chemically recyclable polymers using 4,4-disubstituted five-membered cyclic ketene hemiacetal ester (CKHE) monomers. Chemical Science, 2021, 12, 13546-13556.	7.4	13
43	Reduction-responsive double hydrophilic block copolymer nano-capsule synthesized <i>via</i> RCMP-PISA. Polymer Chemistry, 2021, 12, 1060-1067.	3.9	12
44	Temperatureâ€Selective Dual Radical Generation from Alkyl Diiodide: Applications to Synthesis of Asymmetric CABC Multiâ€Block Copolymers and Their Unique Assembly Structures. Angewandte Chemie, 2018, 130, 1568-1572.	2.0	11
45	Versatile preparation of surface-skinless particles of epoxy resin-based monoliths using a well-defined diblock copolymer surfactant. Polymer Chemistry, 2018, 9, 414-419.	3.9	11
46	A photo-selective chain-end modification of polyacrylate-iodide and its application in patterned polymer brush synthesis. Polymer Chemistry, 2019, 10, 5913-5919.	3.9	10
47	Solidâ€Phase Radical Polymerization of Halogenâ€Bondâ€Based Crystals and Applications to Preâ€Shaped Polymer Materials. Angewandte Chemie - International Edition, 2020, 59, 9360-9364.	13.8	10
48	Use of poly(methyl methacrylate) with an unsaturated chain end as a macroinitiator precursor in organocatalyzed living radical block polymerization. Polymer Chemistry, 2018, 9, 4848-4855.	3.9	9
49	Temperatureâ€Directed Micellar Morphological Transformation Using CABCâ€Block Copolymers and Its Applications in Encapsulation and Hidden Segment. Angewandte Chemie - International Edition, 2020, 59, 1941-1949.	13.8	9
50	Organocatalyzed Living Radical Polymerization of Itaconates and Selfâ€Assemblies of Rodâ^'Coil Block Copolymers. Macromolecular Rapid Communications, 2020, 41, e2000075.	3.9	9
51	Metalâ€Free Fast Azidation by Using Tetrabutylammonium Azide: Effective Synthesis of Alkyl Azides and Wellâ€Defined Azidoâ€End Polymethacrylates. Chemistry - A European Journal, 2019, 25, 13025-13029.	3.3	8
52	Synthesis of ABC Miktoarm Star Copolymers via Organocatalyzed Living Radical Polymerization. Macromolecular Rapid Communications, 2020, 41, e1900623.	3.9	8
53	Systematic study on evolution of self-assembly morphologies of CABC tetrablock terpolymers with varied segment lengths. Polymer Chemistry, 2020, 11, 3987-3993.	3.9	7
54	Sol–Gel Transitions of Combâ€Like Polymethacrylate Copolymers by Mechanoâ€Thermal Stimuli in Water. Macromolecular Chemistry and Physics, 2020, 221, 2000088.	2.2	7

#	Article	IF	CITATIONS
55	Facile Fabrication of Concentrated Polymer Brushes with Complex Patterning by Photocontrolled Organocatalyzed Living Radical Polymerization. Angewandte Chemie, 2018, 130, 13692-13696.	2.0	6
56	Synthesis of Block Copolymers by Mechanistic Transformation from Reversible Complexation Mediated Living Radical Polymerization to the Photoinduced Radical Oxidation/Addition/Deactivation Process. ACS Macro Letters, 2022, 11, 342-346.	4.8	5
57	Photo-Controlled Organocatalyzed Living Radical Polymerization and Its Application to Polymer Brush Synthesis on Surface. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 379-383.	0.3	4
58	Synthesis of block copolymers using poly(methyl methacrylate) with unsaturated chain end through kinetic studies. Polymer Chemistry, 2019, 10, 5617-5625.	3.9	3
59	Halogen-bond-driven supramolecular assemblies of quaternary-ammonium-iodide-containing polymers in three phases. Cell Reports Physical Science, 2021, 2, 100469.	5.6	3
60	Synthesis of Biologically Decomposable Terpolymer Nanocapsules and Higherâ€Order Nanoassemblies Using RCMPâ€PISA. Macromolecular Chemistry and Physics, 2021, 222, 2100349.	2.2	3
61	Surface-Initiated Living Radical Polymerizations Using Iodine, Organotellurium, and Organic Catalysts. Advances in Polymer Science, 2015, , 107-122.	0.8	2
62	83â€1L: <i>Lateâ€News Paper</i> : Electroâ€optic Characteristics of OZâ€IPS LCD Utilizing an Applicationâ€Type, Zeroâ€Azimuth Anchoring Material. Digest of Technical Papers SID International Symposium, 2017, 48, 704-707.	0.3	2
63	Temperatureâ€Directed Micellar Morphological Transformation Using CABCâ€Block Copolymers and Its Applications in Encapsulation and Hidden Segment. Angewandte Chemie, 2020, 132, 1957-1965.	2.0	2
64	Solidâ€Phase Radical Polymerization of Halogenâ€Bondâ€Based Crystals and Applications to Preâ€Shaped Polymer Materials. Angewandte Chemie, 2020, 132, 9446-9450.	2.0	2
65	Aqueous emulsion polymerizations of methacrylates and styrene <i>via</i> reversible complexation mediated polymerization (RCMP). Polymer Chemistry, 2021, 12, 5770-5780.	3.9	2
66	Synthesis of core-crosslinked star polymers <i>via</i> organocatalyzed living radical polymerization. Polymer Chemistry, 2021, 12, 4043-4051.	3.9	2
67	Synthesis of vinyl iodide chain-end polymers via organocatalyzed chain-end transformation. Chemical Communications, 2021, 57, 1105-1108.	4.1	2
68	Polymer Coupling via Hetero-Disulfide Exchange and Its Applications to Rewritable Polymer Brushes. ACS Applied Materials & Discrete Remarks (2021, 13, 24183-24193).	8.0	2
69	Reversible Complexation Mediated Living Radical Polymerization Using Tetraalkylammonium Chloride Catalysts. Macromolecular Rapid Communications, 2022, 43, .	3.9	2
70	Airâ€Tolerant Reversible Complexation Mediated Polymerization (RCMP) Using Aldehyde. Macromolecular Rapid Communications, 2022, , 2200091.	3.9	1
71	Alkyl Bromide as Precursor of Initiating Dormant Species in Organocatalyzed Living Radical Polymerization. ACS Symposium Series, 2018, , 365-378.	0.5	O
72	Dumbbell-Shaped Block Copolymers for the Fabrication of Anisotropic Soft Actuators. ACS Applied Polymer Materials, 0, , .	4.4	0