
Xiujuan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1265274/publications.pdf Version: 2024-02-01

Χιιπιανί

#	Article	IF	CITATIONS
1	How humic acid and Tween80 improve the phenanthrene biodegradation efficiency: Insight from cellular characteristics and quantitative proteomics. Journal of Hazardous Materials, 2022, 421, 126685.	12.4	16
2	An integrative approach enables high bioresource utilization and bioethanol production from whole stillage. Bioresource Technology, 2022, 343, 126153.	9.6	2
3	Transcriptomic Analysis of Morphology Regulatory Mechanisms of Microparticles to Paraisaria dubia in Submerged Fermentation. Applied Biochemistry and Biotechnology, 2022, 194, 4333-4347.	2.9	7
4	Solventâ€Free Hydrogenation of 5â€Hydroxymethylfurfural and Furfural to Furanyl Alcohols and their Selfâ€Condensation Polymers. ChemSusChem, 2022, , .	6.8	4
5	Integrated biorefinery approaches for the industrialization of cellulosic ethanol fuel. Bioresource Technology, 2022, 360, 127516.	9.6	30
6	Using Low Molecular Weight Organic Acids to Enhance Microbial Degradation of Polycyclic Aromatic Hydrocarbons: Current Understanding and Future Perspectives. Water (Switzerland), 2021, 13, 446.	2.7	2
7	Root exuded low-molecular-weight organic acids affected the phenanthrene degrader differently: A multi-omics study. Journal of Hazardous Materials, 2021, 414, 125367.	12.4	27
8	Carboxylated and quaternized lignin enhanced enzymatic hydrolysis of lignocellulose treated by p-toluenesulfonic acid due to improving enzyme activity. Bioresource Technology, 2021, 337, 125465.	9.6	8
9	In-situ corn fiber conversion method unlocks the role of viscosity on enhancing ethanol yield by reducing side-product glycerol. Industrial Crops and Products, 2021, 169, 113653.	5.2	4
10	Computer-Assisted Enzyme-Cocktail Approach Highly Improves Bioethanol Yield. ACS Sustainable Chemistry and Engineering, 2021, 9, 14277-14287.	6.7	7
11	Cellulase-added cassava ethanol process boosts ethanol titer and reduces glycerol production. Industrial Crops and Products, 2020, 148, 112304.	5.2	8
12	<i>In situ</i> pretreatment during distillation improves corn fiber conversion and ethanol yield in the dry mill process. Green Chemistry, 2019, 21, 1080-1090.	9.0	21
13	Ethanol production from mixtures of Distiller's Dried Grains with Solubles (DDGS) and corn. Industrial Crops and Products, 2019, 129, 59-66.	5.2	21
14	Integrated bioethanol production from mixtures of corn and corn stover. Bioresource Technology, 2018, 258, 18-25.	9.6	59
15	In-situ corn fiber conversion improves ethanol yield in corn dry-mill process. Industrial Crops and Products, 2018, 113, 217-224.	5.2	29
16	Role of Temperature, Tank Pressure and Saccharifying Enzyme in Aspergillus niger Citric Acid Fermentation Revealed by Multi-Scale Analysis. Journal of Bionanoscience, 2016, 10, 480-485.	0.4	0
17	Improving Catalytic Performance of <i>Candida rugosa</i> Lipase by Chemical Modification with Polyethylene Glycol Functional Ionic Liquids. Industrial & Engineering Chemistry Research, 2015, 54, 8072-8079.	3.7	41