Edward Grant

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/126494/edward-grant-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

208 65 5,958 42 h-index g-index citations papers 6,283 247 4.9 5.34 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
208	Electrocatalysts Derived from Copper Complexes Transform CO into C Products Effectively in a Flow Cell <i>Chemistry - A European Journal</i> , 2022 , e202200340	4.8	1
207	Size Distributions of Gold Nanoparticles in Solution Measured by Single-Particle Mass Photometry. Journal of Physical Chemistry B, 2021 , 125, 12466-12475	3.4	0
206	A quantum molecular movie: polyad predissociation dynamics in the VUV excited 3plstate of NO. <i>Faraday Discussions</i> , 2021 , 228, 191-225	3.6	O
205	TOGA feature selection and the prediction of mechanical properties of paper from the Raman spectra of unrefined pulp. <i>Analytical and Bioanalytical Chemistry</i> , 2020 , 412, 8401-8415	4.4	1
204	Dissipative dynamics of atomic and molecular Rydberg gases: Avalanche to ultracold plasma states of strong coupling. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2020 , 53, 074003	1.3	5
203	Radio frequency field-induced electron mobility in an ultracold plasma state of arrested relaxation. <i>Physical Review A</i> , 2020 , 102,	2.6	2
202	pH Matters When Reducing CO2 in an Electrochemical Flow Cell. ACS Energy Letters, 2020, 5, 3101-3107	7 20.1	56
201	Delocalized excitons and interaction effects in extremely dilute thermal ensembles. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 2276-2282	3.6	23
200	Many-body physics with ultracold plasmas: quenched randomness and localization. <i>New Journal of Physics</i> , 2019 , 21, 043033	2.9	8
199	Exploring the crossover between high-energy-density plasma and ultracold neutral plasma physics. <i>Physics of Plasmas</i> , 2019 , 26, 100501	2.1	12
198	Control of molecular ultracold plasma relaxation dynamics by mm-wave Rydberg transitions. <i>Molecular Physics</i> , 2019 , 117, 3096-3107	1.7	1
197	Possible Many-Body Localization in a Long-Lived Finite-Temperature Ultracold Quasineutral Molecular Plasma. <i>Physical Review Letters</i> , 2018 , 120, 110601	7.4	13
196	Determination of thiabendazole in orange juice using an MISPE-SERS chemosensor. <i>Food Chemistry</i> , 2018 , 239, 816-822	8.5	56
195	Proof of concept for an optogalvanic gas sensor for NO based on Rydberg excitations. <i>Applied Physics Letters</i> , 2018 , 113, 011113	3.4	7
194	Coupled rate-equation hydrodynamic simulation of a Rydberg gas Gaussian ellipsoid: Classical avalanche and evolution to molecular plasma. <i>Chemical Physics</i> , 2018 , 514, 55-66	2.3	4
193	Arrested relaxation in an isolated molecular ultracold plasma. Physical Review A, 2017, 96,	2.6	14
192	Role of PTFE paste fibrillation on Poisson's ratio. <i>Polymer Testing</i> , 2017 , 61, 65-73	4.5	8

Optical Physics, 2016 , 49, 064009		6
Multivariate Analysis of Hemicelluloses in Bleached Kraft Pulp Using Infrared Spectroscopy. <i>Applied Spectroscopy</i> , 2016 , 70, 1981-1993	3.1	4
On the evolution of the phase-space distributions of a non-spherical molecular ultracold plasma in a supersonic beam. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2016 , 49, 193001	1.3	9
Dynamics of colliding ultracold plasmas. <i>Physical Review A</i> , 2015 , 91,	2.6	10
Modification of xylan in alkaline treated bleached hardwood kraft pulps as classified by attenuated total-internal-reflection (ATR) FTIR spectroscopy. <i>Carbohydrate Polymers</i> , 2015 , 127, 418-26	10.3	18
Three-dimensional imaging of the ultracold plasma formed in a supersonic molecular beam 2015 ,		1
Fabrication of SERS-active substrates using silver nanofilm-coated porous anodic aluminum oxide for detection of antibiotics. <i>Journal of Food Science</i> , 2015 , 80, N834-40	3.4	19
Determination of Sudan I in paprika powder by molecularly imprinted polymers-thin layer chromatography-surface enhanced Raman spectroscopic biosensor. <i>Talanta</i> , 2015 , 143, 344-352	6.2	85
Determination of histamine in canned tuna by molecularly imprinted polymers-surface enhanced Raman spectroscopy. <i>Analytica Chimica Acta</i> , 2015 , 901, 68-75	6.6	56
Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy. <i>Food Chemistry</i> , 2015 , 176, 123-9	8.5	132
Template-oriented genetic algorithm feature selection of analyte wavelets in the Raman spectrum of a complex mixture. <i>Analytical Chemistry</i> , 2014 , 86, 10591-9	7.8	10
Dissociation and the development of spatial correlation in a molecular ultracold plasma. <i>Physical Review Letters</i> , 2014 , 112, 075001	7.4	23
Multivariate classification of pulp NIR spectra for end-product properties using discrete wavelet transform with orthogonal signal correction. <i>Analytical Methods</i> , 2014 , 6, 8906-8914	3.2	6
Detection and quantification of chloramphenicol in milk and honey using molecularly imprinted polymers: Canadian penny-based SERS nano-biosensor. <i>Journal of Food Science</i> , 2014 , 79, N2542-9	3.4	47
Evolution from Rydberg gas to ultracold plasma in a supersonic atomic beam of Xe. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2014 , 47, 155301	1.3	11
Obituary for Moshe Shapiro. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 07040	021.3	
Determination of £ocopherol in vegetable oils using a molecularly imprinted polymers-surface-enhanced Raman spectroscopic biosensor. <i>Journal of Agricultural and Food Chemistry</i> , 2013 , 61, 10467-75	5.7	69
Dissociative recombination slows the expansion of a molecular ultracold plasma. <i>Physical Review A</i> , 2012 , 86,	2.6	10
	Multivariate Analysis of Hemicelluloses in Bleached Kraft Pulp Using Infrared Spectroscopy. Applied Spectroscopy, 2016, 70, 1981-1993 On the evolution of the phase-space distributions of a non-spherical molecular ultracold plasma in a supersonic beam. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 193001 Dynamics of colliding ultracold plasmas. Physical Review A, 2015, 91, Modification of xylan in alkaline treated bleached hardwood kraft pulps as classified by attenuated total-internal-reflection (ATR) FTIR spectroscopy. Carbohydrate Polymers, 2015, 127, 418-26 Three-dimensional imaging of the ultracold plasma formed in a supersonic molecular beam 2015, Fabrication of SERS-active substrates using silver nanofilm-coated porous anodic aluminum oxide for detection of antibiotics. Journal of Food Science, 2015, 80, N834-40 Determination of Sudan I in paprika powder by molecularly imprinted polymers-thin layer chromatography-surface enhanced Raman spectroscopic biosensor. Talanta, 2015, 143, 344-352 Determination of histamine in canned tuna by molecularly imprinted polymers-surface enhanced Raman spectroscopy. Analytica Chimica Acta, 2015, 901, 68-75 Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy. Food Chemistry, 2015, 176, 123-9 Template-oriented genetic algorithm feature selection of analyte wavelets in the Raman spectrum of a complex mixture. Analytical Chemistry, 2014, 86, 10591-9 Dissociation and the development of spatial correlation in a molecular ultracold plasma. Physical Review Letters, 2014, 112, 075001 Multivariate classification of pulp NIR spectra for end-product properties using discrete wavelet transform with orthogonal signal correction. Analytical Methods, 2014, 6, 8906-8914 Detection and quantification of chloramphenicol in milk and honey using molecularly imprinted polymers: Canadian penny-based SERS nano-biosensor. Journal of Food Science, 2014, 79, N2542-9 Evolution from Rydberg gas to ultracold plasma	Auditivariate Analysis of Hemicelluloses in Bleached Kraft Pulp Using Infrared Spectroscopy. Applied Spectroscopy, 2016, 70, 1981-1993 On the evolution of the phase-space distributions of a non-spherical molecular ultracold plasma in a supersonic beam. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 193001 Dynamics of colliding ultracold plasmas. Physical Review A, 2015, 91, Modification of xylan in alkaline treated bleached hardwood kraft pulps as classified by attenuated total-internal-reflection (ATR) FTIR spectroscopy. Carbohydrate Polymers, 2015, 127, 418-26 Three-dimensional imaging of the ultracold plasma formed in a supersonic molecular beam 2015, Fabrication of SERS-active substrates using silver nanofilm-coated porous anodic aluminum oxide for detection of antibiotics. Journal of Food Science, 2015, 80, N834-40 Determination of Sudan I in paprika powder by molecularly imprinted polymers-thin layer chromatography-surface enhanced Raman spectroscopic biosensor. Talanta, 2015, 143, 344-352 Determination of histamine in canned tuna by molecularly imprinted polymers-surface enhanced Raman spectroscopy. Analytica Chimica Acta, 2015, 901, 68-75 Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy. Food Chemistry, 2015, 176, 123-9 Template-oriented genetic algorithm feature selection of analyte wavelets in the Raman spectrum of a complex mixture. Analytical Chemistry, 2014, 86, 10591-9 Dissociation and the development of spatial correlation in a molecular ultracold plasma. Physical Review Letters, 2014, 112, 075001 Multivariate classification of pulp NIR spectra for end-product properties using discrete wavelet transform with orthogonal signal correction. Analytical Methods, 2014, 6, 8906-8914 Detection and quantification of chloramphenicol in milk and honey using molecularly imprinted polymers: Canadian penny-based SERS nano-biosensor. Journal of Food Science, 2014, 179, N2542-9 Determination of Eocopherol in vegetable oils

173	The np Rydberg series of boron monohydride: l-uncoupling and its evolution for intermediate principal quantum numbers $n = 4$ to $n = 11$. <i>Journal of Chemical Physics</i> , 2012 , 136, 214311	3.9	1
172	The np Rydberg series of boron monohydride: l-uncoupling and Rydberg electron interactions with the rovibrational motion of the ion core. <i>Journal of Chemical Physics</i> , 2012 , 136, 214312	3.9	2
171	Adaptive multiscale regression for reliable Raman quantitative analysis. <i>Analyst, The</i> , 2012 , 137, 237-44	5	4
170	Recombinative dissociation and the evolution of a molecular ultracold plasma. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2012 , 45, 175302	1.3	15
169	Evaluating the validity of spectral calibration models for quantitative analysis following signal preprocessing. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 404, 2317-27	4.4	4
168	Classical scaling and the correspondence between the coupled rate equation and molecular dynamics models for the evolution of ultracold neutral plasma. <i>Journal of Physics B: Atomic, Molecular and Optical Physics,</i> 2012 , 45, 025701	1.3	10
167	Molecular ion-electron recombination in an expanding ultracold neutral plasma of NO+. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 18872-9	3.6	17
166	Rapid Determination of Metabolites in Bio-fluid Samples by Raman Spectroscopy and Optimum Combinations of Chemometric Methods. <i>Chinese Journal of Chemistry</i> , 2011 , 29, 2525-2532	4.9	8
165	Dissociative recombination and the decay of a molecular ultracold plasma. <i>Journal of Physics: Conference Series</i> , 2011 , 300, 012005	0.3	4
164	Adaptive wavelet transform suppresses background and noise for quantitative analysis by Raman spectrometry. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 400, 625-34	4.4	42
163	High-throughput prediction of physical and mechanical properties of paper from Raman chemometric analysis of pulp fibres1This article is a contribution to the series The Role of Sensors in the New Forest Products Industry and Bioeconomy Canadian Journal of Forest Research, 2011,	1.9	4
162	41, 2100-2113 On the formation and decay of a molecular ultracold plasma. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2011 , 44, 184015	1.3	21
161	Detecting influential observations by cluster analysis and Monte Carlo cross-validation. <i>Analyst, The</i> , 2010 , 135, 2841-7	5	21
160	Very slow expansion of an ultracold plasma formed in a seeded supersonic molecular beam of NO. <i>Physical Review A</i> , 2009 , 79,	2.6	25
159	Evolution from a molecular Rydberg gas to an ultracold plasma in a seeded supersonic expansion of NO. <i>Physical Review Letters</i> , 2008 , 101, 205005	7.4	75
158	A switching rule for plastics identification in electronics recycling. <i>International Journal of Computer Integrated Manufacturing</i> , 2008 , 21, 730-743	4.3	1
157	Discretefontinuum and discretefiscrete interactions in the autoionization spectrum of 11 BH. <i>Molecular Physics</i> , 2007 , 105, 1589-1602	1.7	4
156	Zeke Spectroscopy: High-Resolution Spectroscopy with Photoelectrons. <i>Advances in Chemical Physics</i> , 2007 , 1-104		23

(2003-2007)

155	Dynamics of dissociative recombination versus electron ejection in single rovibronic resonances of BH. <i>Journal of Chemical Physics</i> , 2007 , 126, 084301	3.9	4	
154	Isolated core excitation of B11H: Photoabsorption in competition with Rydberg predissociation. <i>Physical Review A</i> , 2007 , 75,	2.6	5	
153	Rovibrational characterization of X 2Sigma+ 11BH+ by the extrapolation of photoselected high Rydberg series in 11BH. <i>Journal of Chemical Physics</i> , 2006 , 124, 144312	3.9	12	
152	Viable plastics recycling from end-of-life electronics. <i>IEEE Transactions on Electronics Packaging Manufacturing</i> , 2006 , 29, 25-31		23	
151	Plastic separation planning for end-of-life electronics. <i>IEEE Transactions on Electronics Packaging Manufacturing</i> , 2006 , 29, 110-118		6	
150	On-line content uniformity determination of tablets using low-resolution Raman spectroscopy. <i>Applied Spectroscopy</i> , 2006 , 60, 672-81	3.1	31	
149	Raman spectroscopy for tablet coating thickness quantification and coating characterization in the presence of strong fluorescent interference. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2006 , 41, 811-9	3.5	84	
148	Spectroscopic experiments on autoionization and neutral fragmentation in the high-Rydberg states of BH. <i>Journal of Physics: Conference Series</i> , 2005 , 4, 261-266	0.3	4	
147	Raman spectroscopic measurement of tablet-to-tablet coating variability. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2005 , 38, 270-4	3.5	80	
146	Kr (n=5¶0,s,d,g) electronic wave packets: Electron time-of-flight resolution and the ac-Stark shift during wave-packet preparation. <i>Physical Review A</i> , 2005 , 71,	2.6	5	
145	Mode dependent vibrational autoionization of Rydberg states of NO2. II. Comparing the symmetric stretching and bending vibrations. <i>Journal of Chemical Physics</i> , 2004 , 120, 2667-76	3.9	5	
144	A new instrument adapted to in situ Raman analysis of objects of art. <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 379, 137-42	4.4	80	
143	Toward the comprehensive spectrochemical imaging of painted works of art: a new instrumental approach. <i>Journal of Raman Spectroscopy</i> , 2004 , 35, 813-818	2.3	12	
142	Higher Vibrationally Excited Levels of the 3p@Rydberg State of HCO[] <i>Journal of Physical Chemistry A</i> , 2004 , 108, 10010-10018	2.8	2	
141	State-Selective Production of Vibrationally Excited NO2+ by Double-Resonant Photoionization <i>Journal of Physical Chemistry A</i> , 2004 , 108, 9645-9651	2.8	9	
140	Coupling of electron orbital motion with rotation in the high Rydberg states of BH. <i>Physical Review Letters</i> , 2004 , 92, 173005	7.4	11	
139	Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery. <i>Environmental Science & Environmental S</i>	10.3	32	
138	A symbolic methodology to improve disassembly process design. <i>Environmental Science & Environmental Science & Technology</i> , 2003 , 37, 5417-23	10.3	13	

137	Mode-dependent vibrational autoionization of NO2. Journal of Chemical Physics, 2003, 119, 10146-1015	5 3.9	10
136	BendEtretch Fermi resonance in DCO+. Journal of Chemical Physics, 2002, 116, 2370-2378	3.9	4
135	Laser-assisted (1+1?)-photon ionization-detected absorption spectrum of the 3pl late of HCO and DCO. <i>Journal of Chemical Physics</i> , 2002 , 116, 8384	3.9	7
134	The A1⊠1⊞ (2,0) transition in 11BH and 10BH observed by (1+2)-photon resonance-enhanced multiphoton ionization spectroscopy. <i>Chemical Physics Letters</i> , 2001 , 340, 45-54	2.5	14
133	An experimental measure of anharmonicity in the bending of DCO+. <i>Journal of Chemical Physics</i> , 2001 , 115, 878-884	3.9	10
132	Double-resonant photoionization efficiency spectroscopy: A precise determination of the adiabatic ionization potential of DCO. <i>Journal of Chemical Physics</i> , 2001 , 114, 5224-5232	3.9	6
131	Ultrafast time-resolved soft x-ray photoelectron spectroscopy of dissociating Br2. <i>Physical Review Letters</i> , 2001 , 87, 193002	7.4	141
130	Experimental Characterization of the Higher Vibrationally Excited States of HCO(+): Determination of omega(2), x(22), g(22), and B(030). <i>Journal of Molecular Spectroscopy</i> , 2000 , 199, 147-157	1.3	14
129	Double-resonance spectroscopy of the high Rydberg states of HCO. V. Rovibronic interactions and l-uncoupling in the (010) manifold. <i>Journal of Chemical Physics</i> , 2000 , 113, 5372	3.9	10
128	Double-resonance spectroscopy of the high Rydberg states of HCO. IV. Vibrational autoionization dynamics as a function of bending amplitude. <i>Journal of Chemical Physics</i> , 2000 , 112, 1701-1706	3.9	10
127	Photoionization spectrum of the B2A? state of HCO. <i>Chemical Physics Letters</i> , 1999 , 315, 210-216	2.5	3
126	A characterization of vibrationally and electronically excited NO2+ by high-resolution threshold photoionization spectroscopy. <i>Journal of Chemical Physics</i> , 1999 , 111, 9568-9573	3.9	27
125	Anomalous Intensities in Zero-Kinetic-Energy Spectra. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 6127-6	6 13 33	17
124	On The High Rydberg States Of The Formyl Radical The Dynamics of Vibrational Autoionization in Triatomic Molecules 1999 , 437-455		
123	Double-resonance spectroscopy of the high Rydberg states of HCO. II. Mode specificity in the dynamics of vibrational autoionization via CO stretch versus bend. <i>Journal of Chemical Physics</i> , 1998 , 108, 1886-1892	3.9	16
122	Double-resonance spectroscopy of the high Rydberg states of HCO. III. Multiple pathways in the vibrational autoionization of the bending overtone. <i>Journal of Chemical Physics</i> , 1998 , 108, 8429-8435	3.9	25
121	StateEoEtate dynamics in the high Rydberg states of polyatomic molecules. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 1997 , 355, 1569-1583	3	9
120	Photoselection and the Appearance of FranckCondon-Forbidden Thresholds in the ZEKE Spectrum of NO2. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 6717-6722	2.8	18

119	□believe I will go out of this class actually knowing something □Cooperative learning activities in physical chemistry. Journal of Research in Science Teaching, 1997, 34, 819-835	3.4	62	
118	On the Shape of C6H6+. <i>Science</i> , 1996 , 271, 1698-1702	33.3	97	
117	High-Resolution Non-Resonant Two-Photon Threshold Photoionization of Propyne. <i>Laser Chemistry</i> , 1996 , 16, 151-156		8	
116	BendBtretch Fermi Resonance in[formula]as Observed in the Two-Photon Absorption Spectroscopy of the 3p[formula]Rydberg State of NO2. <i>Journal of Molecular Spectroscopy</i> , 1996 , 175, 203-214	1.3	16	
115	Bend-stretch Fermi resonance in NO2+ observed by delayed pulsed-field ionization zero-electron kinetic energy photoelectron spectroscopy. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1996 , 159, 37-48		11	
114	Fermi resonance and mode specificity in the vibrational autoionization of NO2. <i>Journal of Chemical Physics</i> , 1996 , 104, 42-47	3.9	26	
113	Double-resonance spectroscopy of the high Rydberg states of HCO. I. A precise determination of the adiabatic ionization potential. <i>Journal of Chemical Physics</i> , 1995 , 103, 10513-10519	3.9	26	
112	Organometallic Stability and Structure: Elementary Rates of Unimolecular Decomposition in Chromium Olefin Carbonyls. <i>Journal of the American Chemical Society</i> , 1995 , 117, 12254-12261	16.4	11	
111	Two-pathway coherent control of photoelectron angular distributions in molecular NO. <i>Chemical Physics Letters</i> , 1995 , 241, 591-596	2.5	47	
110	Elementary Arrhenius Parameters in the CO-for-Ethylene Dissociative Substitution of Cr(CO)5(C2H4). <i>The Journal of Physical Chemistry</i> , 1994 , 98, 4622-4626		17	
109	The (2+1) multiphoton ionization spectrum of jet-cooled CS2 between 54 000 and 58 000 cml. <i>Journal of Chemical Physics</i> , 1994 , 100, 3514-3519	3.9	17	
108	On the assignment of Jahn Teller effects in the ultraviolet absorption spectrum of Ag3. <i>Journal of Chemical Physics</i> , 1994 , 100, 6312-6317	3.9	33	
107	SpinBrbit autoionization and intensities in the double-resonant delayed pulsed-field threshold photoionization of HCl. <i>Journal of Chemical Physics</i> , 1994 , 100, 8633-8640	3.9	21	
106	Rovibrational structure of NO+2 and state-to-state dynamics in the high-resolution threshold photoionization of NO2. <i>Journal of Chemical Physics</i> , 1994 , 101, 7199-7210	3.9	45	
105	Effects of intermediate dissociation in the two-photon threshold photoionization of methyl iodide. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 9582-9586		12	
104	SpinBrbit and rotational autoionization in HCl and DCl. <i>Journal of Chemical Physics</i> , 1993 , 99, 2287-2299	3.9	20	
103	RennerTeller coupling in the 3d D D Rydberg state of acetylene. <i>Journal of Chemical Physics</i> , 1993 , 99, 5723-5727	3.9	24	
102	Structured effects of Rydberg-Rydberg rotational coupling on intensities in the zero electron kinetic energy threshold photoionization spectrum of state-selected nitrogen dioxide. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 6875-6880		41	

101	Triple-resonance spectroscopy of the higher excited states of NO2. IV. Trends in the mode dependence of vibrational autoionization via asymmetric stretch versus symmetric stretch and bend. <i>Journal of Chemical Physics</i> , 1992 , 96, 4827-4840	3.9	34
100	Ion rotational distributions for near-threshold photoionization of H2O. <i>Journal of Chemical Physics</i> , 1992 , 96, 7848-7851	3.9	46
99	Laser spectroscopy in a pulsed jet of AlH: Ionization-detected ultraviolet absorption spectra of the transitions C 1 M Alm and b 3 M 1 M. Journal of Chemical Physics, 1992 , 97, 883-893	3.9	28
98	The vibrational structure of the NO2 cation. <i>Chemical Physics Letters</i> , 1992 , 200, 495-501	2.5	29
97	On the Jahn-Teller coupling of an orbital triplet with a vibrational doublet. <i>Chemical Physics</i> , 1991 , 153, 133-140	2.3	1
96	Effect of linear coupling on vibronic energy levels and transition intensities in the Jahn-Teller T? problem. <i>Chemical Physics Letters</i> , 1991 , 187, 309-316	2.5	1
95	Triple-resonance spectroscopy of the higher excited states of NO2. III. ?☑?>1 autoionization and vibronic coupling. <i>Journal of Chemical Physics</i> , 1991 , 94, 5897-5906	3.9	22
94	Threshold-field-ionization photoelectron spectroscopy and delayed forced autoionization of HCl. <i>Physical Review A</i> , 1991 , 44, R5331-R5334	2.6	37
93	Rotationally resolved photoionization of H2O. <i>Journal of Chemical Physics</i> , 1991 , 95, 7033-7040	3.9	86
92	Photoselection and the structure of highly excited states: Rotationally resolved spinBrbit autoionization spectrum of HCl. <i>Journal of Chemical Physics</i> , 1991 , 94, 3429-3439	3.9	15
91	High-resolution threshold photoionization of N2O. <i>Journal of Chemical Physics</i> , 1991 , 95, 746-753	3.9	53
90	Triple-resonance spectroscopy of the higher excited states of NO2. II. Vibrational mode selectivity in the competition between predissociation and autoionization. <i>Journal of Chemical Physics</i> , 1990 , 93, 7731-7739	3.9	26
89	Photoelectron spectroscopy and electronic structure of clusters of the group V elements. III. Tetramers: The 2T2 and 2A1 excited states of P+4, As+4, and Sb+4. <i>Journal of Chemical Physics</i> , 1990 , 93, 6327-6333	3.9	37
88	Triple-resonance spectroscopy of the higher excited states of NO2 : Rovibronic interactions, autoionization, and l-uncoupling in the (100) manifold. <i>Journal of Chemical Physics</i> , 1990 , 93, 2308-2327	3.9	39
87	Photoelectron spectroscopy and electronic structure of clusters of the group V elements. II. Tetramers: Strong Jahn Teller coupling in the tetrahedral 2E ground states of P+4, As+4, and Sb+4. <i>Journal of Chemical Physics</i> , 1990 , 93, 6318-6326	3.9	57
86	Mass spectrometry and its use in tandem with laser spectroscopy. <i>Science</i> , 1990 , 250, 61-8	33.3	20
85	Quantization of a classical analog for the E?e Jahn Teller system at intermediate couplings. <i>Journal of Chemical Physics</i> , 1989 , 90, 2357-2362	3.9	5
84	Multiresonant spectroscopy and dynamics of molecular extravalent states: State-resolved intramolecular relaxation of NO2 above 9 eV. <i>Chemical Physics</i> , 1989 , 129, 73-81	2.3	11

83	Jet-resolved vibronic structure in the higher excited states of N2O: Ultraviolet three-photon absorption spectroscopy from 80 000 to 90 000 cma. <i>Journal of Chemical Physics</i> , 1989 , 91, 3916-3925	3.9	19
82	Time-Resolved Kinetics of Organometallic Reactions in the Gas Phase by Transient Infrared Absorption Spectrometry 1989 , 227-244		Ο
81	Direct determination of the adiabatic ionization potential of NO2 by multiresonant optical absorption. <i>Chemical Physics Letters</i> , 1988 , 144, 58-64	2.5	38
80	A nomenclature for Edoublet levels in rotating linear molecules. <i>Journal of Chemical Physics</i> , 1988 , 89, 1749-1753	3.9	208
79	Structure and dynamics of 3sEltyclopropane: A very fluxional multimode Jahn Teller system. Journal of Chemical Physics, 1988, 89, 4012-4022	3.9	8
78	Spectroscopy of the 3p 2IRydberg state of HCO by resonance-enhanced multiphoton ionization. <i>Journal of Chemical Physics</i> , 1988 , 88, 617-626	3.9	26
77	Gas-phase organometallic kinetics. 3. The observation and carbon monoxide substitution kinetics of cis-bis(ethene)tetracarbonylchromium by time-resolved infrared absorption spectrometry. <i>The Journal of Physical Chemistry</i> , 1988 , 92, 1458-1464		6
76	Elementary Rate Processes in the Dissociative CO for C2H4 Substitution Reactions of Organometallic Complexes in the Gas Phase. <i>Laser Chemistry</i> , 1988 , 9, 63-73		1
75	Intramolecular Vibrational Relaxation and the Dynamics of the High-Power Two-Photon Excitation of NO2 1988 , 337-346		
74	New Information on the Structure and Dynamics of Molecular Cations from Experiments on The Spectroscopy of Polyatomic Rydberg States 1988 , 293-307		
73	Polarized absorption spectroscopy of Edoublet molecules: Transition moment vs electron density distribution. <i>Journal of Chemical Physics</i> , 1987 , 87, 5589-5597	3.9	18
72	Two-photon photodissociation dynamics of state-selected NO2. <i>Journal of Chemical Physics</i> , 1987 , 87, 360-369	3.9	26
71	Topological phase in molecular bound states: Application to the E?e system. <i>Journal of Chemical Physics</i> , 1987 , 87, 2954-2964	3.9	120
70	Gas-phase organometallic kinetics: substitution of carbon monoxide for ethylene in Fe(CO)3(C2H4)2. <i>Journal of the American Chemical Society</i> , 1987 , 109, 352-356	16.4	16
69	Gas-phase organometallic catalysis: kinetics and mechanism of the hydrogenation of ethylene by Fe(CO)3(C2H4)2. <i>Journal of the American Chemical Society</i> , 1987 , 109, 7951-7960	16.4	24
68	Gas-phase organometallic kinetics. 2. Dissociative substitution kinetics of Fe(CO)2(C2H4)3 by transient IR absorption spectrometry. <i>Journal of the American Chemical Society</i> , 1987 , 109, 1051-1055	16.4	15
67	Gas-phase observation and carbon monoxide substitution of cis-Cr(CO)4 (C2H4)2 by time-resolved IR absorption spectrometry. <i>Journal of the American Chemical Society</i> , 1987 , 109, 1252-1253	16.4	18
66	Assignment of the vibronic level structure of trimeric copper (Cu3) ground state. <i>The Journal of Physical Chemistry</i> , 1986 , 90, 3298-3301		26

65	High-resolution two-photon spectroscopy of the NO23pDD+ Rydberg state. <i>Chemical Physics Letters</i> , 1986 , 131, 51-55	2.5	13
64	The dynamic Jahn Teller effect in sym-triazine: Nonadiabatic wave functions and hindered fluxionality. <i>Journal of Chemical Physics</i> , 1986 , 84, 1270-1284	3.9	50
63	Fractional quantization of molecular pseudorotation in Na3. <i>Physical Review Letters</i> , 1986 , 56, 2598-260	7 .4	277
62	Semiclassical quantization of a classical analog for the JahnTeller EB system. <i>Journal of Chemical Physics</i> , 1986 , 85, 2089-2098	3.9	25
61	Observation of multimode vibronic interference effects in 2E1g benzene. <i>Journal of Chemical Physics</i> , 1986 , 84, 654-656	3.9	15
60	Dynamics of the Collision Free Unimolecular Fragmentation of Primary Alkyl Epoxides 1986 , 415-424		
59	Optical selection in double-resonant two-photon photodissociation: near-threshold state-to-state fragmentation dynamics of nitrogen dioxide .fwdarw. nitric oxide(\times X 2.Pl.1/2, v = 0, J, .LAMBDA.) + atomic oxygen (1D). <i>The Journal of Physical Chemistry</i> , 1985 , 89, 5855-5862		19
58	Semiclassical eigenvalues for a non-adiabatic system. <i>Chemical Physics Letters</i> , 1985 , 120, 106-112	2.5	8
57	Higher excited states of benzene: Symmetry assignments of six gerade Rydberg series by four-photon absorption spectroscopy. <i>Journal of Chemical Physics</i> , 1985 , 82, 1135-1146	3.9	49
56	Higher excited states of benzene: Polarized ultraviolet two-photon absorption spectroscopy. Journal of Chemical Physics, 1985 , 82, 1115-1134	3.9	68
55	Intramolecular dynamics and multiresonant absorption spectroscopy. I. Reduced non-FranckLondon intensity in the high-power two-photon absorption spectrum of NO2. <i>Journal of Chemical Physics</i> , 1985 , 83, 5361-5368	3.9	29
54	Intramolecular dynamics and multiresonant absorption spectroscopy. II. Power broadening and superposition states in double resonant two-photon excitation. <i>Journal of Chemical Physics</i> , 1985 , 83, 5369-5379	3.9	15
53	Molecular Dynamics Beyond the Adiabatic Approximation: New Experiments and Theory. <i>Annual Review of Physical Chemistry</i> , 1985 , 36, 277-320	15.7	101
52	Energetics of a homogeneous gas-phase photocatalytic system: the hydrogenation of ethylene by Fe(CO)4(C2H4). <i>Journal of the American Chemical Society</i> , 1985 , 107, 3386-3387	16.4	14
51	Kinetics of the chromium hexacarbonyl and tungsten hexacarbonyl catalyzed water gas shift reaction: photoinitiated formate decomposition as a probe of the catalytic cycle. <i>Journal of the American Chemical Society</i> , 1985 , 107, 1595-1604	16.4	21
50	Pulsed-laser-initiated photocatalysis in the liquid phase. <i>Industrial & Engineering Chemistry Product Research and Development</i> , 1984 , 23, 33-40		6
49	The role of near-resonant intermediate states in the two-photon excitation of nitrogen dioxide: the distinct dynamics of two-photon photofragmentation. <i>The Journal of Physical Chemistry</i> , 1984 , 88, 1271-	-1273	32
48	Strong vibronic coupling in molecular Rydberg states. <i>Journal of Chemical Physics</i> , 1984 , 80, 5999-6005	3.9	28

47	Direct observation of nonlinear Jahn Teller effects in the 1 1A1g->3s 1Eg two-photon spectrum of cyclohexane. <i>Journal of Chemical Physics</i> , 1984 , 80, 1711-1728	3.9	13	
46	Vibronic structure of nonadiabatic and fluxional states: Two-photon absorption spectroscopy of jet isolated 3s 1E? sym-triazine. <i>Journal of Chemical Physics</i> , 1984 , 81, 691-697	3.9	25	
45	A precise determination of the first ionization potential of benzene. <i>Chemical Physics Letters</i> , 1984 , 108, 420-424	2.5	48	
44	High rydberg states of jet-cooled toluene observed by ultraviolet two-photon absorption spectroscopy: Ultrafast radiationless decay and pseudo-Jahn-Teller effects. <i>Chemical Physics</i> , 1984 , 90, 155-165	2.3	18	
43	Relaxation kinetics in the homogeneous gas-phase photocatalytic hydrogenation of ethylene by Fe(CO)4(C2H4). <i>Journal of the American Chemical Society</i> , 1984 , 106, 4635-4636	16.4	16	
42	The role of near-resonant intermediate states in the two-photon excitation of nitrogen dioxide: origin bands in bent-to-linear transitions. <i>The Journal of Physical Chemistry</i> , 1984 , 88, 1273-1275		30	
41	On the Dynamics of Molecular Two-Photon Excitation through Real Intermediate States. <i>Israel Journal of Chemistry</i> , 1984 , 24, 251-258	3.4	4	
40	New Devices for the Production of Intense Pulsed Jets of CF2: Laser Spectroscopic Characterization. <i>Materials Research Society Symposia Proceedings</i> , 1984 , 38, 23		10	
39	Ultraviolet two-photon spectroscopy of benzene: A new gerade Rydberg series and evidence for the 1 1E2g valence state. <i>Journal of Chemical Physics</i> , 1983 , 79, 2626-2640	3.9	53	
38	Photodissociation dynamics of Fe(CO)5: Excited state lifetimes and energy disposal. <i>Journal of Chemical Physics</i> , 1983 , 79, 4899-4911	3.9	67	
37	Multiphoton ionization of nitrogen dioxide: Four photon spectroscopy of the npll Rydberg series. Journal of Chemical Physics, 1983 , 78, 7124-7131	3.9	16	
36	Unimolecular decomposition of nitromethane in a molecular beam with resolution of fragment recoil velocities and internal states: Dynamical evidence for an exit channel barrier. <i>Journal of Chemical Physics</i> , 1983 , 79, 708-719	3.9	28	
35	Highly efficient production of neutral carbon atoms in the ultraviolet multiphoton fragmentation of aromatic molecules. <i>The Journal of Physical Chemistry</i> , 1983 , 87, 1484-1487		46	
34	Detection of photofragments by multiphoton ionization with direct resolution of angular and time-of-flight distributions. <i>Journal of Chemical Physics</i> , 1982 , 77, 4257-4259	3.9	17	
33	Dynamics of the two-photon photodissociation of NO2: A molecular beam multiphoton ionization study of NO photofragment internal energy distributions. <i>Journal of Chemical Physics</i> , 1982 , 77, 5994-6	084	38	
32	Pulsed-laser photocatalytic isomerization and hydrogenation of olefins. <i>Journal of the American Chemical Society</i> , 1982 , 104, 4270-4272	16.4	37	
31	Laser photocatalytic isomerization and hydrogenation of olefins in the gas phase. <i>Journal of Chemical Physics</i> , 1982 , 77, 3769-3770	3.9	21	
30	Evidence for the primary decomposition of propylene oxide to singlet methylene. <i>Journal of Chemical Physics</i> , 1982 , 77, 1886-1890	3.9	2	

Dynamical Effects of High Rotational Excitation in Unimolecular Decomposition Activated by Hot Atom Substitution. *Advances in Chemistry Series*, **1982**, 147-156

28	A 1៤- 🕮 resonance-enhanced multiphoton ionization of jet-cooled CO. <i>Chemical Physics Letters</i> , 1982 , 91, 271-272	2.5	11
27	Detection of nascent no in a methane/air flame by multiphoton ionization. <i>Chemical Physics Letters</i> , 1982 , 87, 141-144	2.5	27
26	Convenient fast pulsed molecular beam valve. <i>Review of Scientific Instruments</i> , 1981 , 52, 1469-1472	1.7	43
25	Two photon resonant multiphoton ionization spectroscopy in the ultraviolet: A new Rydberg system in Br2. <i>Journal of Chemical Physics</i> , 1981 , 75, 49-51	3.9	11
24	A reaction path for halogen elimination from CX2Y2, and its dynamical implications. <i>The Journal of Physical Chemistry</i> , 1981 , 85, 4046-4051		48
23	Resonant multiphoton ionization detection of the NO2 fragment from infrared multiphoton dissociation of CH3NO2. <i>Chemical Physics Letters</i> , 1981 , 79, 15-18	2.5	32
22	Energetics of molecular elimination in the infrared multiphoton dissociation of CF2Cl2, CF2Br2, CF2ClBr, and CFCl3. <i>Journal of Chemical Physics</i> , 1981 , 75, 148-158	3.9	42
21	Temperature dependence as a probe of intramolecular relaxation in the infrared multiphoton excitation of CF2Cl2. <i>Journal of Chemical Physics</i> , 1981 , 74, 384-396	3.9	20
20	Multiphoton ionization of NO2: Spectroscopy and dynamics. <i>Journal of Chemical Physics</i> , 1981 , 75, 2643	-3651	41
19	Enhanced isotope separation in CF2Cl2 by infrared multiphoton dissociation at elevated temperatures. <i>Journal of Chemical Physics</i> , 1981 , 74, 5679-5685	3.9	12
18	Multiphoton dissociation of SF6 by a molecular beam method. <i>Journal of Chemical Physics</i> , 1980 , 72, 498	3 5:4 99	5 88
17	Simple bond rupture reactions in multiphoton dissociation of molecules. <i>Journal of Chemical Physics</i> , 1979 , 70, 912	3.9	158
16	Threshold multiphoton dissociative behavior of CF2Cl2: Evidence for the molecular elimination of Cl2. <i>Journal of Chemical Physics</i> , 1979 , 71, 3537-3538	3.9	29
15	Steady state hot atom kinetic theory model calculations. Time dependent rate coefficients for the nonthermal 18F + H2 reaction. <i>Chemical Physics Letters</i> , 1978 , 53, 588-592	2.5	4
14	Dynamical effects of mode specific excitation in unimolecular decomposition: A trajectory study of C2H6. <i>Chemical Physics Letters</i> , 1978 , 56, 170-174	2.5	8
13	Is Multiphoton Dissociation of Molecules a Statistical Thermal Process?. <i>Physical Review Letters</i> , 1978 , 40, 115-118	7.4	169
12	Dynamical effects in unimolecular decomposition: A classical trajectory study of the dissociation of C2H6 <i>Journal of Chemical Physics</i> , 1978 , 68, 628-636	3.9	40

LIST OF PUBLICATIONS

11	Multiphoton dissociation products from halogenated hydrocarbons. <i>Journal of Chemical Physics</i> , 1978 , 68, 1306-1307	3.9	77
10	Chemistry of High Energy Atomic Fluorine: Steady State Kinetic Theory Model Calculations for the 18F + H2 Reaction III. <i>ACS Symposium Series</i> , 1978 , 314-346	0.4	3
9	Molecular Beam Study of Multiphoton Dissociation of SF6. <i>Physical Review Letters</i> , 1977 , 38, 17-20	7.4	140
8	Studies of Multiphoton Dissociation of Polyatomic Molecules with Crossed Laser and Molecular Beams. <i>ACS Symposium Series</i> , 1977 , 72-82	0.4	
7	The extent of energy randomization in the infrared multiphoton dissociation of SF6. <i>Chemical Physics Letters</i> , 1977 , 52, 595-599	2.5	76
6	Hydrogen abstraction reactions by atomic fluorine. V. Time-independent nonthermal rate constants for the 18F+H2 and 18F+D2 reactions. <i>Journal of Chemical Physics</i> , 1976 , 64, 3450	3.9	29
5	Hydrogen abstraction reactions by atomic fluorine. IV. Temperature dependence of the intermolecular kinetic isotope effect for the nonthermal 18F+H2 reaction. <i>Journal of Chemical Physics</i> , 1976 , 64, 417-426	3.9	6
4	Hydrogen abstraction by fluorine atoms under conditions of thermal initiation: Hydrocarbons and fluorinated hydrocarbons. <i>International Journal of Chemical Kinetics</i> , 1975 , 7, 39-44	1.4	32
3	Hydrogen abstraction reactions by atomic fluorine. III. Temperature dependence of the intermolecular kinetic isotope effect for the thermal F+H2 reaction. <i>Journal of Chemical Physics</i> , 1975 , 63, 2970	3.9	28
2	Isotope effect for the thermal F + H2 reaction: An Arrhenius kinetics experiment based upon nuclear recoil techniques. <i>Chemical Physics Letters</i> , 1974 , 27, 484-489	2.5	7
1	Specific thin-layer chromatography assay of limonin, a citrus bitter principle. <i>Journal of Agricultural and Food Chemistry</i> , 1970 , 18, 250-252	5.7	44