
Marc C Devocelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1264490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional Antagonism of Junctional Adhesion Molecule-A (JAM-A), Overexpressed in Breast Ductal Carcinoma In Situ (DCIS), Reduces HER2-Positive Tumor Progression. Cancers, 2022, 14, 1303.	3.7	2
2	Molecular Aspects of the Interaction with Gram-Negative and Gram-Positive Bacteria of Hydrothermal Carbon Nanoparticles Associated with Bac8c ^{2,5Leu} Antimicrobial Peptide. ACS Omega, 2022, 7, 16402-16413.	3.5	9
3	Plant-Derived Antimicrobial Peptides as Potential Antiviral Agents in Systemic Viral Infections. Pharmaceuticals, 2021, 14, 774.	3.8	15
4	Assessing the correlation of microscopyâ€based and volumetryâ€based measurements for resin swelling in a range of potential greener solvents for SPPS. Journal of Peptide Science, 2020, 26, e3250.	1.4	7
5	Synthesis and characterisation of a novel mono functionalisable Pt(IV) oxaliplatin-type complex and its peptide conjugate. Inorganica Chimica Acta, 2020, 505, 119492.	2.4	8
6	Poly(ethylene glycol)-Based Peptidomimetic "PEGtide―of Oligo-Arginine Allows for Efficient siRNA Transfection and Gene Inhibition. ACS Omega, 2019, 4, 10078-10088.	3.5	11
7	Vibrating Mesh Nebulisation of Pro-Antimicrobial Peptides for Use in Cystic Fibrosis. Pharmaceutics, 2019, 11, 239.	4.5	16
8	A novel medical device coating prevents <i>Staphylococcus aureus</i> biofilm formation on medical device surfaces. FEMS Microbiology Letters, 2019, 366, .	1.8	13
9	Chemoselective Synthesis of N-Terminal Cysteinyl Thioesters via β,γ-C,S Thiol-Michael Addition. Organic Letters, 2019, 21, 3281-3285.	4.6	10
10	Regeneration of aged DMF for use in solidâ€phase peptide synthesis. Journal of Peptide Science, 2019, 25, e3139.	1.4	15
11	Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity. Applied Microbiology and Biotechnology, 2018, 102, 789-799.	3.6	13
12	Action of antimicrobial peptides and their prodrugs on model and biological membranes. Journal of Peptide Science, 2018, 24, e3086.	1.4	11
13	Using Disease-Associated Enzymes to Activate Antimicrobial Peptide Prodrugs. Methods in Molecular Biology, 2017, 1548, 359-368.	0.9	5
14	Eradication of Staphylococcus aureus Biofilm Infections Using Synthetic Antimicrobial Peptides. Journal of Infectious Diseases, 2017, 215, 975-983.	4.0	52
15	Platinum(<scp>iv</scp>) oxaliplatin–peptide conjugates targeting memHsp70+ phenotype in colorectal cancer cells. Chemical Communications, 2017, 53, 11318-11321.	4.1	28
16	Stabilization of Angiotensin-(1–7) by key substitution with a cyclic non-natural amino acid. Amino Acids, 2017, 49, 1733-1742.	2.7	16
17	Polymeric prodrug combination to exploit the therapeutic potential of antimicrobial peptides against cancer cells. Organic and Biomolecular Chemistry, 2016, 14, 9278-9286.	2.8	27
18	Derivatisation of buforin IIb, a cationic henicosapeptide, to afford its complexation to platinum(<scp>ii</scp>) resulting in a novel platinum(<scp>ii</scp>)–buforin IIb conjugate with anti-cancer activity. Dalton Transactions, 2016, 45, 13038-13041.	3.3	16

#	Article	IF	CITATIONS
19	Differential <i>In Vitro</i> and <i>In Vivo</i> Toxicities of Antimicrobial Peptide Prodrugs for Potential Use in Cystic Fibrosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 2813-2821.	3.2	30
20	A novel role for the fibrinogen Asn-Gly-Arg (NGR) motif in platelet function. Thrombosis and Haemostasis, 2015, 113, 290-304.	3.4	11
21	Pro-Moieties of Antimicrobial Peptide Prodrugs. Molecules, 2015, 20, 1210-1227.	3.8	43
22	Virtual Screening Using Combinatorial Cyclic Peptide Libraries Reveals Protein Interfaces Readily Targetable by Cyclic Peptides. Journal of Chemical Information and Modeling, 2015, 55, 600-613.	5.4	14
23	The chain length of biologically produced (R)-3-hydroxyalkanoic acid affects biological activity and structure of anti-cancer peptides. Journal of Biotechnology, 2015, 204, 7-12.	3.8	15
24	Synthesis and assessment of a maleimide functionalized BF ₂ azadipyrromethene near-infrared fluorochrome. Chemical Communications, 2015, 51, 16667-16670.	4.1	38
25	Computational Approaches to Developing Short Cyclic Peptide Modulators of Protein–Protein Interactions. Methods in Molecular Biology, 2015, 1268, 241-271.	0.9	27
26	Potential of Host Defense Peptide Prodrugs as Neutrophil Elastase-Dependent Anti-Infective Agents for Cystic Fibrosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 978-985.	3.2	30
27	Computational survey of peptides derived from disulphide-bonded protein loops that may serve as mediators of protein-protein interactions. BMC Bioinformatics, 2014, 15, 305.	2.6	3
28	Poly(Ethylene Glycol)-Based Backbones with High Peptide Loading Capacities. Molecules, 2014, 19, 17559-17577.	3.8	9
29	In Vitro Investigations of the Efficacy of Cyclodextrin-siRNA Complexes Modified with Lipid-PEG-Octaarginine: Towards a Formulation Strategy for Non-viral Neuronal siRNA Delivery. Pharmaceutical Research, 2013, 30, 1086-1098.	3.5	36
30	The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate. Biomaterials, 2013, 34, 2710-2718.	11.4	55
31	Derivatisation of an Anti ancer Cationic Antimicrobial Peptide and its Complexation to Platinum(II). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1628-1635.	1.2	5
32	Peptide directed transmembrane transport and nuclear localization of Ru(ii) polypyridyl complexes in mammalian cells. Chemical Communications, 2013, 49, 2658.	4.1	57
33	Cell uptake and cytotoxicity of a novel cyclometalated iridium(III) complex and its octaarginine peptide conjugate. Journal of Inorganic Biochemistry, 2013, 119, 65-74.	3.5	46
34	Targeted Antimicrobial Peptides. Frontiers in Immunology, 2012, 3, 309.	4.8	31
35	Membrane permeable luminescent metal complexes for cellular imaging. , 2012, , .		5
36	Luminescent lanthanide-binding peptides: sensitising the excited states of Eu(<scp>iii</scp>) and Tb(<scp>iii</scp>) with a 1,8-naphthalimide-based antenna. Organic and Biomolecular Chemistry, 2012, 10, 126-133.	2.8	21

#	Article	IF	CITATIONS
37	β-Lactam-host defence peptide conjugates as antibiotic prodrug candidates targeting resistant bacteria. RSC Advances, 2012, 2, 2480.	3.6	27
38	Click-Modified Cyclodextrins as Nonviral Vectors for Neuronal siRNA Delivery. ACS Chemical Neuroscience, 2012, 3, 744-752.	3.5	67
39	Inhibition of platelet adhesion by peptidomimetics mimicking the interactive β-hairpin of glycoprotein Ibα. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3323-3326.	2.2	2
40	Beyond conventional antibiotics for the future treatment of methicillin-resistantStaphylococcus aureusinfections: two novel alternatives. FEMS Immunology and Medical Microbiology, 2012, 65, 399-412.	2.7	45
41	CycloPs: Generating Virtual Libraries of Cyclized and Constrained Peptides Including Nonnatural Amino Acids. Journal of Chemical Information and Modeling, 2011, 51, 829-836.	5.4	34
42	A Theoretical Analysis of the Prodrug Delivery System for Treating Antibiotic-Resistant Bacteria. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 650-658.	3.0	3
43	High content analysis to determine cytotoxicity of the antimicrobial peptide, melittin and selected structural analogs. Peptides, 2011, 32, 1764-1773.	2.4	25
44	Proteasome inhibition can induce an autophagy-dependent apical activation of caspase-8. Cell Death and Differentiation, 2011, 18, 1584-1597.	11.2	120
45	Synthesis of Mutual Azo Prodrugs of Anti-inflammatory Agents and Peptides Facilitated by α-Aminoisobutyric Acid. Journal of Organic Chemistry, 2011, 76, 9641-9647.	3.2	38
46	<i>In Vitro</i> Activities of Synthetic Host Defense Propeptides Processed by Neutrophil Elastase against Cystic Fibrosis Pathogens. Antimicrobial Agents and Chemotherapy, 2011, 55, 2487-2489.	3.2	17
47	Impact of amino acid replacements on in vitro permeation enhancement and cytotoxicity of the intestinal absorption promoter, melittin. International Journal of Pharmaceutics, 2010, 387, 154-160.	5.2	27
48	AMP kinase–mediated activation of the BH3-only protein Bim couples energy depletion to stress-induced apoptosis. Journal of Cell Biology, 2010, 189, 83-94.	5.2	142
49	XIAP impairs Smac release from the mitochondria during apoptosis. Cell Death and Disease, 2010, 1, e49-e49.	6.3	51
50	Multimodal cell imaging by ruthenium polypyridyl labelled cell penetrating peptides. Chemical Communications, 2010, 46, 103-105.	4.1	84
51	AMP kinase–mediated activation of the BH3-only protein Bim couples energy depletion to stress-induced apoptosis. Journal of Experimental Medicine, 2010, 207, i12-i12.	8.5	0
52	MODELING THE POPULATION DYNAMICS OF ANTIBIOTIC-RESISTANT BACTERIA: AN AGENT-BASED APPROACH. International Journal of Modern Physics C, 2009, 20, 435-457.	1.7	7
53	Regulation of Glucose Transporter 3 Surface Expression by the AMP-Activated Protein Kinase Mediates Tolerance to Glutamate Excitation in Neurons. Journal of Neuroscience, 2009, 29, 2997-3008.	3.6	153
54	Elucidating the role of Staphylococcus epidermidis serine–aspartate repeat proteinÂG in platelet activation. Journal of Thrombosis and Haemostasis, 2009, 7, 1364-1372.	3.8	68

#	Article	IF	CITATIONS
55	Ligand Switching in Cell-Permeable Peptides: Manipulation of the α-Integrin Signature Motif. ACS Chemical Biology, 2009, 4, 457-471.	3.4	9
56	A computational model of antibiotic-resistance mechanisms in Methicillin-Resistant Staphylococcus aureus (MRSA). Journal of Theoretical Biology, 2008, 254, 284-293.	1.7	28
57	A peptide affinity column for the identification of integrin αIIb-binding proteins. Analytical Biochemistry, 2008, 374, 203-212.	2.4	13
58	Structural studies in aqueous solution of new binuclear lanthanide luminescent peptide conjugates. Chemical Communications, 2008, , 4552.	4.1	23
59	Ruthenium polypyridyl peptide conjugates: membrane permeable probes for cellular imaging. Chemical Communications, 2008, , 5307.	4.1	132
60	BenzylN-[2-(1H-indol-3-yl)ethyl]dithiocarbamate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o288-o289.	0.2	0
61	Bioinformatic discovery of novel bioactive peptides. , 2007, 3, 108-112.		73
62	Absolute Net Charge and the Biological Activity of Oligopeptides. Journal of Chemical Information and Modeling, 2006, 46, 2183-2190.	5.4	5
63	Increased Intracellular Targeting to Airway Cells Using Octaarginine-Coated Liposomes:  In Vitro Assessment of Their Suitability for Inhalation. Molecular Pharmaceutics, 2006, 3, 104-112.	4.6	55
64	5-Chloro-3-hydroxy-2,2-dimethyl-2,3-dihydroquinazolin-4(1H)-one: supramolecular aggregation through a two-dimensional network of N—HO and O—HO interactions. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o5003-o5005.	0.2	0
65	2-Methoxybenzohydroxamic acid: supramolecular aggregation through two-dimensional networks of N—HO and O—HO interactions. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o4955-o4957.	0.2	0
66	2-Amino-5-iodobenzohydroxamic acid: supramolecular aggregation through two-dimensional networks of N—HO, O—HN and C—HO interactions. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o5083-o5085.	0.2	0
67	2-Amino-3,5-dichlorobenzohydroxamic acid: supramolecular aggregation through two-dimensional networks of O—HN/O and N—HO/Cl interactions. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o5086-o5088.	0.2	0
68	A novel functional role for the highly conserved ?-subunit KVGFFKR motif distinct from integrin ?IIb?3activation processes. Journal of Thrombosis and Haemostasis, 2006, 4, 1804-1812.	3.8	18
69	A peptide corresponding to the neuropilin-1-binding site on VEGF165 induces apoptosis of neuropilin-1-expressing breast tumour cells. British Journal of Cancer, 2005, 92, 328-333.	6.4	112
70	Parallel synthesis and in vitro activity of novel anthranilic hydroxamate-based inhibitors of the prostaglandin H2 synthase peroxidase activity. Organic and Biomolecular Chemistry, 2005, 3, 3678.	2.8	15
71	Calreticulin-independent regulation of the platelet integrin αllbβ3by the KVGFFKR αllb-cytoplasmic motif. Platelets, 2004, 15, 43-54.	2.3	8
72	A convenient parallel synthesis of low molecular weight hydroxamic acids using polymer-supported 1-hydroxybenzotriazole. Organic and Biomolecular Chemistry, 2003, 1, 850-853.	2.8	22

#	Article	IF	CITATIONS
73	A Novel Family of Hydroxamate-Based Acylating Inhibitors of Cyclooxygenase. Molecular Pharmacology, 2003, 63, 450-455.	2.3	31
74	<i>O</i> -Acetylsalicylhydroxamic Acid, a Novel Acetylating Inhibitor of Prostaglandin H ₂ Synthase: Structural and Functional Characterization of Enzyme-Inhibitor Interactions. Molecular Pharmacology, 2001, 60, 1407-1413.	2.3	30
75	Alternative synthesis of the chiral atypical β-adrenergicphenylethanolaminotetraline agonist SR58611A using enantioselective hydrogenation. Tetrahedron Letters, 1999, 40, 4551-4554.	1.4	54
76	Asymmetric Hydrogenation of α, β, and γ-Aminoketones Catalyzed by Cationic Rhodium(I){AMPP} Complexes. Synlett, 1997, 1997, 1306-1308.	1.8	34
77	Amidophosphineâ^'Phosphinites:  Synthesis and Use in Rhodium-Based Asymmetric Hydrogenation of Activated Keto Compounds. Crystal Structure of Bis[(μ-chloro)((S)-2-((diphenylphosphino)oxy)-2-phenyl-) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 572 Td ((N-(dipher	nylphosphine
78	Rhodium(I) bis(aminophosphane) complexes as catalysts for asymmetric hydrogenation of activated ketones. Tetrahedron: Asymmetry, 1996, 7, 379-382.	1.8	25
79	Highly Efficient Asymmetric Hydrogenation of Activated and Unactivated Ketones Catalyzed by Rhodium(I) Aminophosphine- and Amidophosphine-Phosphinite Complexes. Beneficial Effect of the Non Chiral Ligand. Synlett, 1995, 1995, 358-360.	1.8	40