Fabienne Poncin-Epaillard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/126434/publications.pdf

Version: 2024-02-01

153 papers 4,006 citations

145106 33 h-index 56 g-index

158 all docs

158 docs citations

158 times ranked 5013 citing authors

#	Article	IF	CITATIONS
1	Insight into acetylene plasma deposition using molecular dynamics simulations. Plasma Processes and Polymers, 2022, 19, e2100103.	1.6	8
2	Plasma Texturing of Polymers. Engineering Materials, 2022, , 91-119.	0.3	0
3	Contributions of atmospheric plasma treatment on a hygrothermal aged carbon/epoxy 3D woven composite material. Polymer Degradation and Stability, 2022, 202, 110023.	2.7	5
4	Surface plasma treatment (Ar/CF ₄) decreases biofouling on polycarbonate surfaces. Surface Innovations, 2021, 9, 65-76.	1.4	5
5	Cellulose carbon fiber: plasma synthesis and characterization. Cellulose, 2021, 28, 1973-1988.	2.4	5
6	Characterization of surface physico-chemistry and morphology of plasma-sized carbon fiber. Thin Solid Films, 2021, 721, 138555.	0.8	12
7	Enhancement of metal adhesion, owing to the plasma texturing of PEEK. Plasma Processes and Polymers, 2021, 18, 2100009.	1.6	6
8	Plasma polymer for enhancing adhesion bonds of a metal/elastomer assembly. Plasma Processes and Polymers, 2021, 18, 2100035.	1.6	3
9	Characterization of functionalized coatings prepared from pulsed plasma polymerization. Materials Chemistry and Physics, 2021, 267, 124621.	2.0	3
10	Study of femtosecond laser multi-scale textured steel surfaces on the wettability in relation to aging. Journal of Materials Science, 2021, 56, 20169-20180.	1.7	6
11	Distribution of metal nanoparticles in a plasma polymer matrix according to the structure of the polymer and the nature of the metal. Thin Solid Films, 2020, 699, 137261.	0.8	7
12	Correlation between the surface chemistry, the surface free energy and the adhesion of metallic coatings onto plasma-treated Poly(ether ether ketone). Applied Surface Science, 2020, 501, 144242.	3.1	13
13	Surface characterization of plasma-modified carbon fiber: Correlation between surface chemistry and morphology of the single strand. Surfaces and Interfaces, 2020, 21, 100731.	1.5	6
14	A route for the synthesis of polyaniline-based hybrid nanocomposites. Journal of Materials Science, 2020, 55, 5782-5794.	1.7	14
15	Role of the surface chemistry of plasma polymer layers on their longâ€term antifogging behavior. Plasma Processes and Polymers, 2020, 17, 1900232.	1.6	2
16	Affinity and distribution of silver nanoparticles within plasma polymer matrices. Journal of Materials Science, 2019, 54, 12972-12987.	1.7	9
17	How the chemical structure of the plasma-deposited SiOx film modifies its stability and barrier properties: FTIR study. Progress in Organic Coatings, 2019, 137, 105332.	1.9	6
18	Plasma codeposition of transparent thin films: Relationship between the surface chemistry and the antiâ€fogging property. Plasma Processes and Polymers, 2019, 16, 1900070.	1.6	4

#	Article	IF	Citations
19	A multi-step cold plasma process for fine tuning of polymer nanostructuring. Progress in Organic Coatings, 2019, 128, 112-119.	1.9	6
20	Influence of the chemical composition and formulation of fluorinated epoxy resin on its surface characteristics. European Polymer Journal, 2019, 112, 452-460.	2.6	10
21	Plasma O2modifies the structure of synthetic zeolite-A to improve the removalof cadmium ions from aqueous solutions. Turkish Journal of Chemistry, 2019, 43, 172-184.	0.5	10
22	Role of adsorbed water on PEEK surfaces prior to â^' and after â^' atmospheric plasma activation. Plasma Processes and Polymers, 2018, 15, 1800007.	1.6	7
23	A Better Understanding of the Very Low-Pressure Plasma Polymerization of Aniline by Optical Emission Spectroscopy Analysis. Plasma Chemistry and Plasma Processing, 2018, 38, 887-902.	1.1	6
24	Study of the alkali lignin stabilization thanks to plasma process. Polymer Degradation and Stability, 2018, 156, 202-210.	2.7	4
25	Effect of cold plasma surface treatment on the properties of supported ionic liquid membranes. Separation and Purification Technology, 2017, 187, 127-136.	3.9	12
26	Influence of the curing temperature on the diffusion rate of the perfluorinated alkyl chains of a modified epoxy resin. European Polymer Journal, 2017, 91, 61-69.	2.6	9
27	Nanotexturing of plasma-polymer thin films using argon plasma treatment. Surface and Coatings Technology, 2017, 330, 196-203.	2.2	7
28	Plasma polymerized allyl alcohol/O2 thin films embedded with silver nanoparticles. Thin Solid Films, 2016, 616, 339-347.	0.8	20
29	A Bottom-Up and Templateless Process for the Elaboration of Plasma-Polymer Nanostructures. Plasma Processes and Polymers, 2016, 13, 227-235.	1.6	10
30	Computing thermomechanical properties of dry homopolymers used as raw materials for formulation of biomedical hydrogels. Journal of Molecular Modeling, 2016, 22, 159.	0.8	3
31	How the structural and physicochemical properties of polyacrylamide/alginate hydrogel influence its oxygen permeability. Polymer Testing, 2016, 53, 299-304.	2.3	16
32	Synthesis and characterization of simultaneous IPNs. Evidence of the IPN structure by selective chemical attack on the cross-linker. Materials Today Communications, 2015, 4, 1-5.	0.9	0
33	Scanning-probe-microscopy of polyethylene terephthalate surface treatment by argon ion beam. Nuclear Instruments & Methods in Physics Research B, 2015, 362, 49-56.	0.6	5
34	Plasma Copolymerization of Fluorinated and Acrylate Monomers: Kinetics and Chemical Structure Study. Plasma Processes and Polymers, 2015, 12, 493-501.	1.6	15
35	Surface migration of fluorinated additive during the curing of epoxy resin. Composites Part B: Engineering, 2015, 73, 10-15.	5.9	11
36	Plasma functionalization and etching for enhancing metal adhesion onto polymeric substrates. RSC Advances, 2015, 5, 62348-62357.	1.7	26

#	Article	IF	CITATIONS
37	N2 plasma-assisted grafting of fluorinated chains onto partially cured epoxy resins. Composites Part B: Engineering, 2015, 69, 6-12.	5.9	3
38	Surface chemistry of PET for enhancing its antifouling properties. RSC Advances, 2014, 4, 64006-64013.	1.7	10
39	Immunoglobulin G immobilization on PVDF surface. Colloids and Surfaces B: Biointerfaces, 2014, 115, 139-149.	2.5	20
40	Improvement of the adsorption of quaternary ammonium on polypropylene affinity membrane through the control of its surface properties. Materials Science and Engineering C, 2014, 35, 386-391.	3.8	0
41	Fluorinated epoxy resin as a low adhesive mould for composite material. Composites Part B: Engineering, 2014, 63, 94-100.	5.9	23
42	Impact of hydrophobic plasma treatments on the barrier properties of poly(lactic acid) films. RSC Advances, 2014, 4, 5626.	1.7	25
43	Effect of cold plasma treatment on surface properties and gas permeability of polyimide films. RSC Advances, 2014, 4, 31036-31046.	1.7	44
44	Processing of plasma-modified and polymer-grafted hydrophilic PET surfaces, and study of their aging and bioadhesive properties. RSC Advances, 2014, 4, 31409-31415.	1.7	19
45	Texturation and superhydrophobicity of polyethylene terephthalate thanks to plasma technology. Applied Surface Science, 2014, 292, 782-789.	3.1	28
46	Extracting chemical information from single-wavelength X-ray reflectivity data. EPJ Applied Physics, 2013, 62, 10304.	0.3	0
47	Thermal annealing as a new simple method for PTFE texturing. Polymer, 2013, 54, 5858-5864.	1.8	25
48	Plasma-polymer coatings onto different biodegradable polyesters surfaces. European Polymer Journal, 2013, 49, 882-892.	2.6	22
49	Elaboration and surface modification of structured poly(l-lactic acid) thin film on various substrates. Materials Science and Engineering C, 2013, 33, 2526-2533.	3.8	16
50	Elaboration of highly hydrophobic polymeric surface $\hat{a} \in $ " a potential strategy to reduce the adhesion of pathogenic bacteria?. Materials Science and Engineering C, 2013, 33, 1152-1161.	3.8	48
51	Ammonia Gas Sensors Based on <i>In Situ</i> and Drop-Coated Polyaniline Nanostructures. Advanced Materials Research, 2013, 685, 134-138.	0.3	5
52	Improvement of the Detection of Neurodegenerative Alzheimer's Disease through a Specific Surface Chemistry Applied onto the Inner Surface of the Titration Well. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1951-1961.	1.9	2
53	Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules. Journal of Functional Biomaterials, 2012, 3, 528-543.	1.8	69
54	How to Control the Recombinant Prion Protein Adhesion for Successful Storage Through Modification of Surface Properties. Biointerphases, 2012, 7, 66.	0.6	1

#	Article	IF	CITATIONS
55	Study of the Adhesion of Neurodegenerative Proteins on Plasma-Modified and Coated Polypropylene Surfaces. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1879-1893.	1.9	6
56	Relationship between ammonia sensing properties of polyaniline nanostructures and their deposition and synthesis methods. Analytica Chimica Acta, 2012, 737, 64-71.	2.6	74
57	Nonâ€Adhesive Behavior of New Nanostructured PNIPAM Surfaces Towards Specific Neurodegenerative Proteins: Application to Storage and Titration of Tau Proteins. Macromolecular Bioscience, 2012, 12, 1354-1363.	2.1	1
58	Improvement of Water Barrier Properties of Poly(ethylene- <i>co</i> -vinyl alcohol) Films by Hydrophobic Plasma Surface Treatments. Journal of Physical Chemistry C, 2012, 116, 12599-12612.	1.5	29
59	Increasing the Detection Limit of the Parkinson Disorder through a Specific Surface Chemistry Applied onto Inner Surface of the Titration Well. Journal of Functional Biomaterials, 2012, 3, 298-312.	1.8	1
60	A New Approach for Detection Improvement of the Creutzfeldt-Jakob Disorder through a Specific Surface Chemistry Applied onto Titration Well. Biosensors, 2012, 2, 433-447.	2.3	О
61	Are the Interactions between Recombinant Prion Proteins and Polymeric Surfaces Related to the Hydrophilic/Hydrophobic Balance?. Macromolecular Bioscience, 2012, 12, 830-839.	2.1	9
62	Microwave plasma activation of a polyvinylidene fluoride surface for protein immobilization. Journal Physics D: Applied Physics, 2011, 44, 475303.	1.3	24
63	Comparison between hexatriacontane and stearic acid behaviours under late Ar―O2 post-discharge. Surface and Coatings Technology, 2011, 205, S443-S446.	2.2	11
64	Interaction Mechanisms Between Ar–O2 Post-Discharge and Stearic Acid I: Behaviour of Thin Films. Plasma Chemistry and Plasma Processing, 2011, 31, 189-203.	1.1	28
65	Interaction Mechanisms Between Ar–O2 Post-Discharge and Stearic Acid II: Behaviour of Thick Films. Plasma Chemistry and Plasma Processing, 2011, 31, 205-215.	1.1	12
66	Film Chemistry Control and Growth Kinetics of Pulsed Plasma-Polymerized Aniline. Plasma Chemistry and Plasma Processing, 2011, 31, 217-231.	1.1	52
67	Sulfur dioxide Plasma Treatment of the Clay (Laponite) Particles. Plasma Chemistry and Plasma Processing, 2011, 31, 449-464.	1.1	16
68	Elaboration of nano-structured grafted polymeric surface. Journal of Colloid and Interface Science, 2011, 362, 300-310.	5.0	13
69	Effect of Fluorine Substitution of Aniline Ring on Pulsed Plasma Polymer Growth and Structure. Plasma Processes and Polymers, 2011, 8, 763-772.	1.6	11
70	Grafting of p-styrene sulfonate and 1,3-propane sultone onto Laponite for proton exchange membrane fuel cell application. Journal of Membrane Science, 2011, 366, 33-42.	4.1	45
71	Composite membranes based on Nafion \hat{A}^{\otimes} and plasma treated clay charges: Elaboration and water sorption investigations. Journal of Membrane Science, 2011, 369, 155-166.	4.1	37
72	Elaboration de couches de polyaniline pour capteurs optiques d'ammoniac. Les plasmas froids en tant que technique d'élaboration. Instrumentation Mesure Metrologie, 2011, 11, 125-147.	0.2	0

#	Article	IF	Citations
73	New hybrid membranes for fuel cells: Plasma treated laponite based sulfonated polysulfone. Journal of Membrane Science, 2010, 351, 1-10.	4.1	32
74	Preparation and modification of carbon nanotubes electrodes by cold plasmas processes toward the preparation of amperometric biosensors. Electrochimica Acta, 2010, 55, 7916-7922.	2.6	17
75	Effect of dry-ozone exposure on different polymer surfaces and their resulting biocidal action on sporulated bacteria. Surface Science, 2010, 604, 1487-1493.	0.8	22
76	Ammonia absorption study of pulsed-plasma polyaniline by quartz crystal microgravimetry and UV/vis spectrometry. Talanta, 2010, 81, 602-608.	2.9	18
77	Surface Engineering and Cell Adhesion. Journal of Adhesion Science and Technology, 2010, 24, 2301-2322.	1.4	18
78	Treatment of Hexatriacontane by Ar–O ₂ Remote Plasma: Formation of the Active Species. Plasma Processes and Polymers, 2009, 6, S198.	1.6	30
79	Oxygen atom density in capacitively coupled RF oxygen plasma. Vacuum, 2009, 83, 792-796.	1.6	15
80	Integrated SU-8 photonic gas sensors based on PANI polymer devices: Comparison between metrological parameters. Optics Communications, 2009, 282, 3839-3845.	1.0	14
81	Development of an optical ammonia sensor based on polyaniline/epoxy resin (SU-8) composite. Talanta, 2009, 77, 1590-1596.	2.9	52
82	Plasma-Treated Superhydrophobic Polyethylene Surfaces: Fabrication, Wetting and Dewetting Properties. Journal of Adhesion Science and Technology, 2009, 23, 447-467.	1.4	21
83	PANI/ZnO/Quartz structure for Love wave gas sensor. EPJ Applied Physics, 2009, 47, 12702.	0.3	6
84	Role of the Temperature on the Interaction Mechanisms Between Argon–Oxygen Post-Discharge and Hexatriacontane. Plasma Chemistry and Plasma Processing, 2008, 28, 495-509.	1.1	19
85	Improvement of the Optical Transmission of Polymer Planar Waveguides by Plasma Treatment. Plasma Processes and Polymers, 2008, 5, 275-288.	1.6	9
86	New sensitive layer based on pulsed plasma-polymerized aniline for integrated optical ammonia sensor. Analytica Chimica Acta, 2008, 626, 44-52.	2.6	23
87	Design and Sensing Properties of an Integrated Optical Gas Sensor Based on a Multilayer Structure. Analytical Chemistry, 2008, 80, 9188-9194.	3.2	54
88	A new evanescent wave ammonia sensor based on polyaniline composite. Talanta, 2008, 76, 314-319.	2.9	34
89	Plasma etching of organic material: Combined effects of charged and neutral species. EPJ Applied Physics, 2007, 37, 299-305.	0.3	28
90	RF plasma-polymerization of acetylene: Correlation between plasma diagnostics and deposit characteristics. Surface and Coatings Technology, 2007, 201, 5815-5821.	2.2	57

#	Article	IF	CITATIONS
91	Grafting of hydrocarbon moieties on smectites by cold acetylene plasma and characterization of plasma-treated clay mineral polyethylene nanocomposites. Polymer, 2007, 48, 58-67.	1.8	27
92	Surface Engineering by Coating of Hydrophilic Layers: Bioadhesion and Biocontamination. , 2006, , 175-188.		1
93	Unsaturated polyester resin (UPR) reinforced with flax fibers, untreated and cold He plasma-treated: thermal, mechanical and DMA studies. Composite Interfaces, 2006, 13, 355-364.	1.3	15
94	New Surfaces with Hydrophilic/Hydrophobic Characteristics in Relation to (No)Bioadhesion. International Journal of Artificial Organs, 2006, 29, 453-461.	0.7	58
95	Dynamic (de)wetting properties of superhydrophobic plasma-treated polyethylene surfaces. Surface and Interface Analysis, 2006, 38, 144-149.	0.8	41
96	Influence of the polymer pre-treatment before its electroless metallization. Surface and Coatings Technology, 2006, 200, 4257-4265.	2.2	42
97	Synthesis of transparent superhydrophobic polyethylene surfaces. Surface and Coatings Technology, 2006, 200, 5296-5305.	2.2	140
98	Effect of a low-pressure plasma treatment on water vapor diffusivity and permeability of poly(ethylene-co-vinyl alcohol) and polyethylene films. Surface and Coatings Technology, 2006, 201, 868-879.	2.2	28
99	Controlled modification of octadecyltrichlorosilane self-assembled monolayer by CO2 plasma. Thin Solid Films, 2006, 496, 612-618.	0.8	20
100	Modification of Hexatriacontane by O2–N2 Microwave Post-Discharges. Plasma Chemistry and Plasma Processing, 2006, 26, 251-266.	1.1	32
101	Study of electroless copper plating onto PVDF modified by radio frequency plasma treatment. Journal Physics D: Applied Physics, 2006, 39, 2224-2230.	1.3	6
102	Versatile SOG/SU-8/fluorinated SU-8 rib optical waveguides as microsystems: single-mode TE 00 -TM 00 straight waveguides, S-Bends, Y-Junctions, Mach-Zehnder interferometers., 2005, 5956, 233.		0
103	Surface Modification of PVDF by Microwave Plasma Treatment for Electroless Metallization. , 2005, , 157-176.		6
104	Characterization Of Composites With Flax Fibers Treated With Cold Plasma-Water Permeation And Thermal Analysis. Materials Research Innovations, 2005, 9, 15-17.	1.0	3
105	Fluorine plasma treatment on SU-8 polymer for integrated optics. Optics Communications, 2005, 246, 25-28.	1.0	24
106	Illustration of the interface between N2/CO2 plasmas and polystyrene surface. Surface and Interface Analysis, 2005, 37, 325-331.	0.8	9
107	Acid and basic functionalities of nitrogen and carbon dioxide plasma-treated polystyrene. Surface and Interface Analysis, 2005, 37, 348-355.	0.8	66
108	A novel technique to measure the surface electrical potential of polymer films by using dielectric spectroscopy. Surface and Interface Analysis, 2005, 37, 737-742.	0.8	0

#	Article	IF	CITATIONS
109	Azobenzene-Containing Monolayer with Photoswitchable Wettability. Langmuir, 2005, 21, 12278-12282.	1.6	115
110	Unsaturated polyester composites reinforced with flax fibers: effect of cold plasma and autoclave treatments on mechanical and permeation properties. Composites Part A: Applied Science and Manufacturing, 2005, 36, 975-986.	3.8	134
111	Morphology of polypropylene films treated in CO2 plasma. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2007-2013.	2.4	8
112	Polyethylene ultrahydrophobic surface: synthesis and original properties. EPJ Applied Physics, 2004, 26, 209-214.	0.3	23
113	Characterization of Polypropylene Surface Treated in a CO2 Plasma. Plasmas and Polymers, 2003, 8, 225-236.	1.5	54
114	Water and toluene barrier properties of a polyamide 12 modified by a surface treatment using cold plasma. Materials Research Innovations, 2003, 7, 183-190.	1.0	15
115	Polyaniline as a new sensitive layer for gas sensors. Analytica Chimica Acta, 2003, 475, 1-15.	2.6	443
116	Surface engineering of biomaterials with plasma techniques. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 1005-1028.	1.9	133
117	Effects of the Addition of Hydrogen in the Nitrogen Cold Plasma:Â The Surface Modification of Polystyrene. Langmuir, 2003, 19, 8325-8330.	1.6	67
118	New Route for the Elaboration of Polyolefin Surfaces Bearing Azo Molecules. Langmuir, 2003, 19, 5318-5322.	1.6	6
119	Planar Texture Developed in Plasma Treated Polypropylene Films. Materials Science Forum, 2002, 408-412, 1579-1584.	0.3	4
120	Surface Modification by Low-Pressure Plasma of Polyamide 12 (PA12). Improvement of the Water Barrier Properties. Langmuir, 2002, 18, 10411-10420.	1.6	18
121	CO2, H2O, and CO2/H2O Plasma Chemistry for Polyethylene Surface Modification. Langmuir, 2002, 18, 2246-2253.	1.6	88
122	Characterization of CO2 plasma-treated polyethylene surface bearing carboxylic groups. Surface and Coatings Technology, 2002, 160, 197-205.	2.2	61
123	Characterization of CO2 Plasma and Interactions with Polypropylene Film. Plasmas and Polymers, 2002, 7, 1-17.	1.5	31
124	Reactions and stability of fluorinated poly(vinyl trimethylsilane) in electrochemical systems. Polymer, 2001, 42, 1907-1913.	1.8	7
125	Effect of a plasma treatment on water diffusivity and permeability of an unsaturated polyester resin. Journal of Fluorine Chemistry, 2001, 107, 199-203.	0.9	19
126	Synthesis of a new polymer surface bearing grafted azo polymer chains. Journal of Polymer Science Part A, 2001, 39, 3052-3061.	2.5	5

#	Article	lF	CITATIONS
127	ToF-SIMS ability to quantify surface chemical groups: correlation with XPS analysis and spectrochemical titration. Surface and Interface Analysis, 2001, 31, 1042-1047.	0.8	35
128	Cold plasma surface modification of conventionally and nonconventionally plasticized poly(vinyl) Tj ETQq0 0 0 rg Applied Polymer Science, 2001, 79, 1384-1393.	gBT /Overlo 1.3	ock 10 Tf 50 7 61
129	Synthesis and Characterization of New Supported Metallocene Catalysts Using a Cold Plasma Treatment: Application to Molecular Mechanics and Dynamics Computational Modeling. Macromolecular Chemistry and Physics, 2001, 202, 3606-3616.	1.1	7
130	Reactivity of surface groups attached on a plasma treated poly(propylene) film. Application to a new concept of a chelating membrane. Macromolecular Chemistry and Physics, 2000, 201, 212-219.	1.1	20
131	Relations between Surface Energy and Surface Potentials of a Nitrogen Plasma-Modified Polypropylene. Langmuir, 2000, 16, 1450-1453.	1.6	14
132	Surface modification by low-pressure glow discharge plasma of an unsaturated polyester resin: effect on water diffusivity and permeability. Surface and Coatings Technology, 1999, 122, 247-259.	2.2	38
133	Reactivity of surface groups formed onto a plasma treated poly(propylene) film. Macromolecular Chemistry and Physics, 1999, 200, 989-996.	1.1	32
134	Surface modification of hexatriacontane by CF4plasmas studied by optical emission and threshold ionization mass spectrometries. EPJ Applied Physics, 1998, 4, 181-191.	0.3	13
135	Postgrafting of N-vinyl-2-pyrrolidone onto a plasma modified polypropylene surface. Macromolecular Chemistry and Physics, 1998, 199, 1613-1621.	1.1	8
136	Cold Plasma Treatment:Â Surface or Bulk Modification of Polymer Films?. Macromolecules, 1997, 30, 4415-4420.	2.2	70
137	In situ spectroellipsometry study of the crosslinking of polypropylene by an argon plasma. Applied Surface Science, 1997, 108, 177-185.	3.1	52
138	Illustration of surface crosslinking of different polymers treated in argon plasma. Macromolecular Chemistry and Physics, 1997, 198, 2439-2456.	1.1	22
139	Optical emission from tetrafluoromethane plasma and its relationship to surface modification of hexatriacontane. Plasmas and Polymers, 1996, 1, 65-85.	1.5	8
140	Improvement of the adhesion of silica layers to polypropylene induced by nitrogen plasma treatment. Thin Solid Films, 1996, 290-291, 68-73.	0.8	38
141	Adhesion mechanisms of silica layers on plasma-treated polymers. Part II. Polypropylene. Journal of Adhesion Science and Technology, 1996, 10, 1313-1332.	1.4	16
142	Adhesion mechanisms of silica layers on plasma-treated polymers. Part I. Polycarbonate. Journal of Adhesion Science and Technology, 1996, 10, 1287-1311.	1.4	44
143	In Situ Study of The Exposure of Polycarbonate to an Argon Plasma. Materials Research Society Symposia Proceedings, 1995, 385, 27.	0.1	3
144	Reactivity of a polypropylene surface modified in a nitrogen plasma. Journal of Adhesion Science and Technology, 1994, 8, 455-468.	1.4	55

#	Article	IF	CITATIONS
145	Surface Modification of Hexatriacontane: A Comparison Between Exposure to An Electron-Assisted CF* _n Radical Flux and to a Microwave Low-Pressure CF ₄ Plasma. Journal of Macromolecular Science - Pure and Applied Chemistry, 1994, 31, 1087-1103.	1.2	0
146	Modification of isotactic polypropylene by a cold plasma or an electron beam and grafting of the acrylic acid onto these activated polymers. Journal of Applied Polymer Science, 1994, 53, 1291-1306.	1.3	59
147	Study of polymer treatment with tetrafluoromethane plasma: Reactivity of fluorinated species on model surfaces. Journal of Polymer Science Part A, 1993, 31, 2671-2680.	2.5	18
148	Plasma modification of cellulose derivatives as biomaterials. Journal of Applied Polymer Science, 1992, 44, 1513-1522.	1.3	27
149	Title is missing!. Die Makromolekulare Chemie, 1991, 192, 1589-1599.	1.1	32
150	Quelques avantages de la polymérisation induite par un plasma froid microonde. Die Makromolekulare Chemie, 1990, 191, 691-699.	1.1	5
151	Title is missing!. Die Makromolekulare Chemie, 1990, 191, 1451-1461.	1.1	4
152	Functionalization of polypropylene by a microwave (433 MHz) cold plasma of carbon dioxide. Surface modification or surface degradation?. European Polymer Journal, 1990, 26, 333-339.	2.6	47
153	Argon-Oxygen Post-Discharge Treatment of Hexatriacontane: Heat Transfer between Gas Phase and Sample. Key Engineering Materials, 0, 373-374, 421-425.	0.4	17